Guia docente						
	Datos Identificativos					2022/23
Asignatura (*)	Métodos Computacionales para los Medios Continuos Código			730497221		
Titulación	Mestrado Universitario en Enxeñ	aría Industrial ((plan 2018)			
		Descr	iptores			
Ciclo	Periodo	Cu	rso		Tipo	Créditos
Máster Oficial	1º cuatrimestre	Seg	undo		Optativa	3
Idioma	Castellano					·
Modalidad docente	Presencial					
Prerrequisitos						
Departamento	Enxeñaría Naval e Industrial					
Coordinador/a	Gosset , Anne Marie Elisabeth Correo electrónico anne.gosset@udc.es			dc.es		
Profesorado	Gosset , Anne Marie Elisabeth Correo electrónic		rónico	anne.gosset@udc.es		
	López Peña, Fernando fernando		fernando.lopez.	nando.lopez.pena@udc.es		
Web						
Descripción general	Esta es una asignatura introductoria al módulo de optatividad de métodos computacionales para los medios continuos. En			es para los medios continuos. En		
	ella se trata, en primer lugar, de repasar y poner en común conceptos que los alumnos deben de haber adquirido durante					
	sus estudios de grado y orientarlos después al enfoque que se les da al resto de las asignaturas de este módulo. Se					
	plantea la hipótesis de medio continuo y se ve como el planteamiento de unos principios físicos de conservación permiten					
	obtener las ecuaciones generales que gobiernan los desplazamientos y los esfuerzos en medios continuos. Se analizan					
	las relaciones constitutivas que permiten obtener las ecuaciones para los distintos tipos de medio y se desarrollan estas					
	ecuaciones en los casos de sólidos elásticos y de fluidos newtonianos. Por último se analizan los métodos de					
	discretización de estas ecuaciones mediante diferencias finitas, elementos finitos y volúmenes finitos.					

	Competencias del título		
Código	Competencias del título		
А3	ETI3 - Capacidad para el diseño y ensayo de máquinas.		
A5	ETI5 - Conocimientos y capacidades para el diseño y análisis de máquinas y motores térmicos, máquinas hidráulicas e instalaciones de calor y frío industrial		
A19	El3 - Conocimientos y capacidades para el cálculo y diseño de estructuras.		
A20	El4 - Conocimiento y capacidades para el proyectar y diseñar instalaciones eléctricas y de fluidos, iluminación, climatización y ventilación, ahorro y eficiencia energética, acústica, comunicaciones, domótica y edificios inteligentes e instalaciones de Seguridad.		
B2	G2 Proyectar, calcular y diseñar productos, procesos, instalaciones y plantas.		
B5	G5 Realizar la planificación estratégica y aplicarla a sistemas tanto constructivos como de producción, de calidad y de gestión medioambiental.		
В6	CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.		
B13	G8 Aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.		
B16	G11 Poseer las habilidades de aprendizaje que permitan continuar estudiando de un modo autodirigido o autónomo.		
C1	ABET (a) - An ability to apply knowledge of mathematics, science, and engineering.		
C3	ABET (c) - An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.		
C8	ABET (h) - The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.		
C9	ABET (i) - A recognition of the need for, and an ability to engage in life-long learning.		
C11	ABET (k) - An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.		

Resultados	de aprendiz	aje
------------	-------------	-----

Resultados de aprendizaje	Comj	petencia	as del
		título	
Dominar las leyes de conservación de los medios continuos	AP19	BP2	CP1
	AP20	BP5	CP11
		BP13	
Comprender las ecuaciones constitutivas que diferencian el comportamiento de los fluidos y sólidos deformables.	AP3	BP6	CP1
	AP19	BP16	CP3
	AP20		
Comprender las leyes de conservación de la dinámica de fluidos y de la mecánica de sólidos elásticos	AP19	BP13	CP1
	AP20		
Entender los fundamentos y conceptos de la discretización de las ecuaciones	AP5	BP2	CP1
	AP19		CP8
			CP9
Diferenciar la filosofía detrás de los métodos de diferencias, elementos y volúmenes finitos.	AP3	BP13	CP1
	AP5		CP3
	AP19		CP11
	AP20		

Contenidos			
Tema	Subtema		
Introducción	Fundamentos, conceptos básicos, herramientas y aplicaciones de la mecánica de		
	medios continuos.		
Tema 1. Leyes de conservación en medios continuos	1. Fuerzas en el seno de un medio continuo		
	2. Fuerzas de superficie: tensor de esfuerzos.		
	3. Cinemática		
	4. Principios de conservación aplicados a medios continuos		
Tema 2. Modelos constitutivos para sólidos elásticos.	1. Comportamiento elástico de sólidos		
Ecuaciones de la elasticidad	2. Ecuaciones constitutivas de la elasticidad		
	3. Planteamiento general del problema elástico		
	4. Pincipios generales en la solución del problema elástico		
	5. Deformaciones y esfuerzos de origen térmico		
Tema 3. Modelos constitutivos para fluidos. Leyes de la	1. Ecuaciones de conservación de la dinámica de fluidos en forma diferencial		
dinámica de fluidos	2. Ecuación de conservación de la masa		
	3. Ecuación de conservación de cantidad de movimiento		
	4. Ecuación de conservación de la energía		
	5. El sistema completo de ecuaciones de Navier-Stokes. Condiciones iniciales y de		
	contorno.		
	6. Movimientos turbulentos		
Tema 4. Discretización de las ecuaciones. Filosofía de los	1. El paso al espacio discreto		
métodos de diferencias finitas, elementos finitos y volúmenes	2. Estructura de la malla		
finitos.	3. Discretización de las ecuaciones de derivadas parciales		
	4. Modelos de discretización por diferencias finitas, elementos finitos y volúmenes		
	finitos. Adecuación a los diferentes campos de la ingeniería.		
	5. Propiedades de los modelos: consistencia, estabilidad, convergencia, y		
	conservación.		
	6. Errores de discretización		

Tema 5. Método de diferencias fínitas	Bases del método de diferencias fínitas		
	2. Aplicación a la resolución de un problema de conducción de calor transitoria.		
	Programación con Matlab		
	3. Aplicación al cálculo de la advección de un pulso en un medio continuo.		
	Programación con Matlab		
Tema 6. Método de elementos fínitos	Bases del método de elementos fínitos		
	2. Método de Galerkin. Aplicación a la ecuación de difusión estacionaria en 1D.		
	3. Aplicación a la resolución de la ecuación de conducción de calor. Programación		
	con Matlab.		

	Planificac	1011		
Metodologías / pruebas	Competéncias	Horas presenciales	Horas no	Horas totales
			presenciales /	
			trabajo autónomo	
Sesión magistral	A3 A5 A19 A20 B16	12	18	30
	B6 C1 C8 C9 C11			
Prácticas a través de TIC	A19 A20 B2 B13 C3	4	14	18
	C11			
Solución de problemas	A5 A20 B2 B5 B13	5	20	25
	B16 B6 C1 C3 C11			
Atención personalizada		2	0	2

Metodologías			
Metodologías	Metodologías Descripción		
Sesión magistral	esión magistral Exposición oral complementada con el uso de medios audiovisuales y la introducción de algunas preguntas dirigidas a los		
	estudiantes, con la finalidad de transmitir conocimientos y facilitar el aprendizaje.		
Prácticas a través de	a través de Metodología que permite al alumnado aprender de forma efectiva, a través de actividades de carácter		
TIC	práctico (demostraciones, simulaciones, etc.) la teoría de un ámbito de conocimiento, mediante la utilización de las		
	tecnologías de la información y las comunicaciones.		
Solución de	e Técnica mediante la que ha de resolverse una situación problemática concreta, a partir de los conocimientos que se han		
problemas	trabajado, que puede tener más de una posible solución.		

	Atención personalizada			
Metodologías	Metodologías Descripción			
Solución de	Solución de Se tutelará al alumno en las técnicas de resolución de problemáticas concretas, a partir de los conocimientos que se han			
problemas	problemas trabajado, que puede tener más de una posible solución.			

Evaluación			
Metodologías	odologías Competéncias Descripción		Calificación
Prácticas a través de	A19 A20 B2 B13 C3	Cada alumno entregará una memoria describiendo los resultados logrados durante	30
TIC	C11	las prácticas TIC.	
Solución de	A5 A20 B2 B5 B13	Cada alumno resolverá problemas y ejercicios planteados a lo largo del curso	70
problemas	B16 B6 C1 C3 C11		

Observaciones evaluación
Observaciones evaluación

En esta asignatura no se acepta dispensa académica.

Si un alumno no supera la asignatura en la primera oportunidad, en la segunda oportunidad y en la convocatoria adelantada únicamente podrá entregar la revisión y mejora de aquellos trabajos entregados y calificados como no aptos previamente.

	Fuentes de información
Básica	- Reddy, J.N. (2010). Principles of Continuum Mechanic. Cambridge University Press
	- Lopez Peña, F. (2019). Mecánica de Fluidos (2a Ed.). Universidade da Coruña
	- Peiró, J. & Difference, Finite Element and Finite Volume Methods for Partial
	Differential Equations, in Handbook of Materials Modeling pp 2415-2446. Springer
	- Anderson, J.D. (1995). Computational fluid dynamics. The basics with applications. McGraw-Hill Education
Complementária	- Versteeg, H.K. & Dynamics (2nd Ed.). Pearson
	Education Limited

Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Asignaturas que se recomienda cursar simultáneamente
Volúmenes Finitos en CFD/730497222
Asignaturas que continúan el temario
Proceso de Simulación CFD/730497223
Simulación de Sistemas Mecánicos y Estructurales/730497224

Otros comentarios

El alumno ha de haber adquirido en sus estudios anteriores unas competencias en mecánica de fluidos, elasticidad y métodos numéricos equivalentes a las que se adquieren en un grado de ingeniería industrial. Para ayudar a conseguir un entorno inmediato sostenido y cumplir con el objetivo de la acción número 5: ?Docencia e investigación saludable y sustentable ambiental y social? del "Plan de Acción Green Campus Ferrol": 1.- La entrega de los trabajos documentales que se realicen en esta materia: 1.1. Se solicitará en formato virtual y/o soporte informático. 1.2. Se realizará a través de Moodle, en formato digital sin necesidad de imprimirlos 1.3. De realizarse en papel: - No se emplearán plásticos. - Se realizarán impresiones a doble cara. - Se empleará papel reciclado. - Se evitará la impresión de borradores. 2.- Se debe hacer un uso sostenible de los recursos y la prevención de impactos negativos sobre el medio natural. 3.- Se debe tener en cuenta a importancia de los principios éticos relacionados con los valores de la sostenibilidade

en los comportamientos personales y profesionales. 4.- Según se recoge en las distintas normativas de aplicación para la docencia universitaria se deberá incorporar la perspectiva de género en esta materia (se usará lenguaje no sexista, se utilizará bibliografía de autores de ambos sexos, se propiciará la intervención en clase de alumnos y alumnas...).

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías