

		Teaching Guide			
	Identifying Data 2022/23				
Subject (*)	Analysis Technics and Data Mod	elling for Efficiency	Code	770523021	
Study programme	Mestrado Universitario en Eficien	cia e Aproveitamento Enerxético			
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	e 2nd four-month period	First	Optional	3	
Language	SpanishGalician				
Teaching method	Face-to-face				
Prerequisites	isites				
Department	Ciencias da Computación e Tecr	noloxías da InformaciónComputaci	ónMatemáticas		
Coordinador	Fontenla Romero, Oscar E-mail oscar.fontenla@udc.es				
Lecturers	Fontenla Romero, Oscar	E-mail	oscar.fontenla@udc.es		
Web	campusvirtual.udc.gal				
General description	The main objective of this course from a standpoint of machine lea	is that students learn the fundame	ental concepts and the lication in the field of e	main models of data mining, both nergy efficiency.	

	Study programme competences
Code	Study programme competences
A11	Capacidad para aplicar métodos de análisis de datos para la creación de sistemas energéticos eficientes.
B3	Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a
	menudo en un contexto de investigación.
B6	Buscar y seleccionar alternativas considerando las mejores soluciones posibles.
B14	Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora de la eficiencia
C3	Aplicar una metodología que fomente el aprendizaje y el trabajo autónomo.

Learning outcomes			
Learning outcomes		Study programme	
	competences		
Demonstrate detailed understanding of the main methods of data mining.		BC3	
Recognize problems that are amenable to energy optimization by using data mining techniques.		BC6	
Propose solutions for improving energy efficiency in systems that have operating data provided by different data acquisition			CC3
systems.			
Knowing tools for dimension reduction		BC14	
Application of classification and regression techniques to data obtained by monitoring critical variables on energy efficiency		BC14	

	Contents
Торіс	Sub-topic
1. Introduction to machine learning and data mining	1.1. Preliminary concepts
	1.2. Exploratory data analysis
	1.3. Types of problems: classification, regression, clustering, anomaly detection, etc.
	1.4. Types of learning: supervised, unsupervised, reinforcement, etc.
2. Models for supervised and unsupervised classification of	2.1. Preliminary concepts
data	2.2. Main models: k-nearest neighbors, SVMs, clustering, etc.
3. Regression/system identification models for estimation and	3.1. Preliminary concepts
prediction	3.2. Main models
4. Data processing techniques	4.1. Data preparation and standardization
	4.2. Dimension reduction

5. Experimental methodology and analysis of results	5.1. Metrics for evaluating the models and techniques for unbiased estimate of the
	error
	5.2. Model selection and analysis of results
6. Statistical Quality Control	6.1. Control graphs
	6.2. Process capacity analysis
7. Applications in Energy Efficiency	7.1. Examples in forecasting
	7.2. Examples for anomaly detection

Planning				
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	B3	9	18	27
Laboratory practice	A11 B14	12	10	22
Supervised projects	A11 B6 B14 C3	0	22	22
Objective test	B3	3	0	3
Personalized attention		1	0	1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Classroom activity used to establish the fundamental concepts of matter. It consists of the oral presentation complemented by
keynote speech	the use of audiovisual/multimedia media and performing some questions to students in order to transmit knowledge and
	facilitate learning.
Laboratory practice	Development of practices in the computer lab. This will consist of case studies and examples. Besides the students will solve
	exercises posed by teachers.
Supervised projects	Performing work related to any of the topics on the agenda of the subject. Students will deliver them in electronic format,
	including a memory and a presentation that will have to expose the teacher. These works require the assistance of at least
	one personal tutoring for each group.
Objective test	Evaluation test to be held at the end of course in the corresponding official announcements. It will consist of a written test that
	will be necessary to respond to different theoretical and practical issues.

	Personalized attention
Methodologies	Description
Supervised projects	The personalized attention will be needed to show the progress of the proposed work and to provide appropriate guidance and
	ensure quality. It will also be used for solving conceptual questions and monitoring the execution of the work. These tutorials
	be made in person at the teacher's office.

		Assessment	
Methodologies	Competencies /	Description	
	Results		
Supervised projects	A11 B6 B14 C3	Autonomous individual or small group work. It will be necessary to deliver the	40
		materials (memory and presentation) in a timely manner as described in the	
		statement. In addition, it will require oral presentation by all members of the working	
		group, using for that presentation delivered. It is taken into account for the evaluation	
		of this activity the memory, the presentation and also the answers to the teacher's	
		questions during compulsory presentation. Omission of the presentation will be a	
		grade of zero in this activity.	

Objective test	B3	Final test of matter consisting of conducting individual examination. This test will have	60
		questions and related theoretical concepts studied in lectures, laboratory practices or	
		content of such practices tutored projects.	

Assessment comments

In order to pass the course the student must meet the following requirements (score between 0 and 10 in all activities):-Achieving a grade greater or equal than 3.5 in the objective test conducted at the end of the semester.-Achieving a grade greater or equal than 5 adding of all the grades of the assessment tests.

Noteson activities:

-All activities will have a unique opportunity for delivery during the academic year, except the final objective test that will have two official exam opportunities.

	Sources of information
Basic	- T. Agami Reddy (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists. Springer
	- Basilio Sierra Araujo (2006). Aprendizaje Automático: conceptos básicos y avanzados. Pearson Prentice Hall
	- Douglas Montgomery (2005). Introduction to Statistical Quality Control. John Wiley & amp; Sons
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.