

		Teaching Guide		
	Identifying	Data		2023/24
Subject (*)	Genetic Variation Mechanisms		Code	610441005s
Study programme	Máster Universitario en Bioloxía Mo	olecular, Celular e Xenética (se	mipresencial)	I
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degre	ee 1st four-month period	First	Obligatory	3
Language	SpanishEnglish	· · · ·		
Teaching method	Hybrid			
Prerequisites				
Department	Bioloxía			
Coordinador	Gonzalez Tizon, Ana Maria	E-mail	ana.gonzalez.t	zon@udc.es
Lecturers	Gonzalez Tizon, Ana Maria	E-mail	ana.gonzalez.t	zon@udc.es
	Vila Sanjurjo, Antón		anton.vila@udo	c.es
Web	cie48.udc.es			
General description	It aims to deepen the knowledge of	the various mechanisms that g	generate genetic variat	ion, both in the aspect of their
	molecular basis and in their impact	on genomes and evolution.		

	Study programme competences
Code	Study programme competences
A3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A6	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
A12	Skills to understand, detect and analyze the genetic variation, knowing genotoxicity processes and methodologies for its evaluation, as well as carrying out diagnosis and genetic risk studies.
A13	Skills to become a professional in health, pharmacy, veterinary, animal production, biotechnology or food sectors.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B2	Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the formulation of biological problems and the looking for solutions.
C2	Ability to know and use appropriately the technical terminology of the field of knowledge of the master, in the native language and in
	English, as a language of international diffusion in this field
C3	Using ICT in working contexts and lifelong learning.

Learning outcomes			
Learning outcomes	Study programme		
	cor	npeten	ces
Comprehensive reading of scientific texts related to the module subjects	AR3	BR1	CC2
Ability to expose the current state of knowledge within this field	AR6	BR2	CC3
Critical ability to evaluate hypotheses and interpret results	AR11		
Understanding cell structure and function from an interdisciplinary vision in which Cell Biology, classical Cytology, Genetics			
and Molecular Biology converge			
Understanding of the biochemical and physiological processes that allow signaling between cells and with structural elements,			
as well as the causative aspects of pathologies related to alterations in cell signaling and the tools used for your study			
Know the experimental techniques to access the study of the molecular mechanisms of regulation of gene expression as well			
as the molecular machinery involved and their regulatory systems			
To know the characteristics of the proteins and complexes involved in the regulation of gene expression, their interaction with			
genetic material and the enzymatic reactions that modulate their activity.			
To know the mechanisms that cause genetic variability			

	Contents
Торіс	Sub-topic
Topic 1. Nature of mutations.	Estimates of mutation rate and frequency.
	Types of lesions caused by mutations. Physical and chemical mutagens.
	Reversion and deletion.
	Paramutation.
Topic 2. DNA repair mechanisms.	Preventive methods.
	Direct repair.
	Excision repair.
	Post-replication repair.
Topic 3. Genetic diseases related to mutagenic agents.	Cancer.
	Diseases due to failures in repair systems.
Topic 4. Mobile DNA:	abundance in genomes.
	Classifications of transposable elements. Proliferation.
	Modular evolution. Impact on genomes. Domestication.
Topic 5. Recombination processes.	Recombination rates.
	Gene conversion.
	Sexual dimorphism of the rate of recombination, crossing over and gene conversion.
	Biased gene conversion.
Topic 6. Evolution of scientific thinking about the origin of	Introduction: Cell evolution: the "bumpy" path to "who knows
genetic variability. The contribution of Woese.	where" History of evolutionary thought: Lamarck
	History of evolutionary thought: Darwin
	History of evolutionary thought: Modern Synthesis of Evolutionary Biology
	State of Microbiology (and Virology) for most of the 20th century
	Carl Woese
	LUCA
	Generation of genetic variability in the beginning of life
Unit 7. Microbial evolution in the era of genomics	Introduction
	The turbulent dynamics of microbial evolution
	HGT
	Damned concepts of classical genetics: genetic elements with Lamarckian flavor?
	Damned concepts of classical genetics: Evolution of evolution?
Unit 8. The mysterious world of viruses	Introduction
	figures and definitions
	Are the viruses alive?
	Early ideas about the evolution of viruses
	Structural biology allows a deep look into the past
	The origin of viral replicons
	When did viruses originate?
	Gene flow between viruses and hosts
	New discoveries about the evolution of viruses
	Viral population dynamics models
	conclusions

Planning				
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A3 A6 A11 A12 A13	0	36	36
	B1 B2 C2 C3			
Long answer / essay questions	C2 C3	2	8	10

Multiple-choice questions	C2 C3	8	0	8
Workbook	A6 A11 A12 B1 B2 C2	0	14	14
	C3			
Laboratory practice	A12 A13 B1 B2 C2	6	0	6
	C3			
Personalized attention		4	0	4

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	In each class the contents of the program will be exposed. The teachers' presentations will be incorporated into the Moodle
keynote speech	platform.
	CONTINGENCY PLAN: the lectures will be held via TEAMS at the previously approved official hours
Long answer / essay	Written test in which any aspect addressed in the theoretical and practical teaching will be dealt with.
questions	
	CONTINGENCY PLAN: PRESENTIAL students will take the exam via TEAMS on the date and times previously established
•• •• •	and approved
Multiple-choice	
questions	
Workbook	
Laboratory practice	The laboratory practices are the following:
	Practice 1: PCR amplification of DNA sequences
	Practice 2: electrophoresis of PCR products
	Practice 3: Work with bioinformatics tools for the analysis of the sequences of the PCR products
	CONTINGENCY PLAN: in case of confinement, the practices will be reconverted or replaced in computer analysis working
	with different genomic sequences.

	Personalized attention		
Methodologies	es Description		
	The students will be able to attend the tutorials in the previously established schedules or agreed with the students of the		
	subject. These tutorials may be individual or group via TEAMS, email or in person.		
	CONTINGENCY PLAN: in case of confinement, they will be carried out through TEAMS individually, or by email.		

		Assessment	
Methodologies	Competencies	Description	
Long answer / essay	C2 C3	Test de resposta múltiple sobre os contenidos teóricos e prácticos. Cando menos o	
questions		50% da proba será en inglés. Nesta actividade avaliarase a adquisición das	
		competencias A5, A9, A16.	
Laboratory practice	A12 A13 B1 B2 C2	Attendance to lab sessions and execution of exercises proposed by the teacher will be	15
	C3	graded. For the monitoring and grading of learning, students must prepare and	
		present a practical notebook with its introduction, materials and methods, description	
		of results and conclusions. In this activity the acquisition of competence A5 will be	
		evaluated.	

Assessment comments

Laboratory practices are mandatory.To pass the subject, the student must obtain at least 50% of the score assigned to the essay / development test and another 50% of that of the laboratory practices.It will be considered NOT PRESENTED when the student has not participated in more than 20% of the scheduled assessable activities. This criterion applies to the January call. In the July call, to obtain the grade NOT PRESENTED, it will be enough to not appear for the objective tests (theory and practical exams).For the evaluation of the July call, the student, in addition to the corresponding exams, must present the power point presentation of the oral presentation. In the event that this activity was already evaluated in the January call, the grade obtained will remain for July.For students with part-time dedication and exemption from attendance, the teacher will adopt the measures that he deems appropriate to avoid damaging her grade (flexibility in the delivery dates of the assessable activities). Instead of the oral presentation, these students will make a 2-3 page summary that must be delivered in pdf to the teacher for evaluation.

	Sources of information		
Basic	- Weiner, M. P., Gabriel, S., and Claibo, J. (2007). Genetic variation: a laboratory manual. Cold Spring Harbor		
	Laboratory Press		
	- Meyers, R. A. (2007). Genomics and genetics: from molecular details to analysis and techniques. Wiley-VCH		
	- Gibson, G. (2009). A primer of genome science. Sinauer Associates		
	- N L Craig et al. (2002). Mobile DNA II. ASM Press		
	- E.C. Friedberg et al. (2006). DNA repair and mutagenesis. Second edition. ASM Press		
	O alumnado recibirá por parte dos profesores da materia webgrafía reciente e artículos de revisión para preparar		
	axeitadamente a materia.		
Complementary	- Hartl, D. L. (2009). Genetics: analysis of genes and genomes. Jones and Bartlett		
	- J. M. Coffin et al. (1997). Retroviruses. Cold Spring Harbor Laboratory Press		
	- R Scott Hawley, MY Walker (2003). Advanced genetic analysis. Finding meaning in a genome Blackwell Publishing		
	- Watson et al. (2004). Molecular Biology of the gene. Fifth edition. Pearson-Cummings		

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

Attendance at lectures makes it possible to deal with any doubts or questions that may arise in the course of the explanations, facilitating the understanding of the subjects. Study should include regular reading of at least the recommended bibliography. Group study and work favours understanding and develops a critical spirit. The doubts and difficulties that arise in any aspect of the subject will be resolved as soon as possible, raising them in the classroom or attending individual tutorials. Given that part of the recommended bibliography for this subject is in English, it is recommended to have a good command of this language, at least at the level of comprehension of written texts.Gender PerspectiveIn this subject, the gender perspective will be taken into account, sexist attitudes will not be tolerated and the values of respect and equality will be promoted.Program Green Campus Empower of SciencesTo help to achieve some sustainable immediate surroundings and fulfil with the point 6 of the Environmental Statement of the faculty of Sciences (2020), the documentary works that realise in this matter:a. They will request mostly in virtual format and computer supportb. To realise in paper:-they will not employ plastic-will realise impressions to double expensive-will employ paper recycled-will avoid the realisation of draftsTo Environmental Statement is available in:https://ciencias.udc.es/images/Facultade/Green_Campus/Regulamento_Comit%C3%A9_Green_Campus_FCiencias.pdf

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.