

		Teaching Guide			
	Identifying D	Data		2023/24	
Subject (*)	Protein Structure and Dynamics		Code	610441012s	
Study programme	Máster Universitario en Bioloxía Molecular, Celular e Xenética (semipresencial)				
	-	Descriptors			
Cycle	Period	Period Year Type			
Official Master's Degre	ee 2nd four-month period	First	Optional	3	
Language	SpanishEnglish				
Teaching method	Hybrid				
Prerequisites					
Department	BioloxíaDepartamento profesorado m	náster			
Coordinador	Becerra Fernandez, Manuel E-mail manuel.becerra@udc.es			@udc.es	
Lecturers	Barreiro Alonso, Aida Inés	E-mail	aida.barreiro@u	dc.es	
	Becerra Fernandez, Manuel		manuel.becerra@	@udc.es	
	De Castro De Antonio, María Eugenia	a	m.decastro@udo	c.es	
	Vizoso Vázquez, Ángel José		a.vizoso@udc.es	S	
Web					
General description	This subject pretends to meet and manage the theoretical foundations and the experimental approaches to the analysis of				
	the physical and chemical of biological macromolecules, especially proteins, properties in order to relate their structures				
	with its function and biological activity. We will study the concepts needed for the description of the structures,				
	computational and experimental methods for their study and the theoretical foundations that justify them.				

	Study programme competences
Code	Study programme competences
A3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A9	Skills of understanding the structure and dynamics of proteins to individual and proteomic level, as well as the techniques that are
	necessary to analyze them and to study their interactions with other biomolecules.
B2	Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the formulation of
	biological problems and the looking for solutions.
B3	Skills of management of the information: that are able to gather and to understand relevant information and results, obtaining conclusions
	and to prepare reasoned reports on scientific and biotechnological questions
B4	Organization and work planning skills: that are able to manage the use of the time as well as available resources and to organize the work
	in the laboratory.
C2	Ability to know and use appropriately the technical terminology of the field of knowledge of the master, in the native language and in
	English, as a language of international diffusion in this field
C3	Using ICT in working contexts and lifelong learning.
C8	Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning outcomes				
Learning outcomes		Study programme competences		
	AR9		CC8	
Familiarization with the bibliographic and information sources where you can get updated information		BR2	CC2	
	AR9		CC3	
			CC8	
Know the systems for the determination of structures by x-ray diffraction	AR9	BR2	CC3	
			CC8	

Learn different computer programs for the representation of proteins and their use	AR3	BR2	CC3
	AR9		CC8
Learn the techniques to determine interactions between proteins and proteins with other biomolecules and ligands	AR3	BR4	CC8
	AR9		
Ability to interpret critically the data of a structure of a protein in a publication	AR3	BR3	CC2
	AR9		CC3

	Contents
Торіс	Sub-topic
Structural classification of proteins.	Structural domains of proteins. Classification of proteins according to its
	three-dimensional structure. Alpha proteins. Alpha/beta protein. Protein beta.
	Structural classes of proteins. CATH classification. SCOP classification. DALI
	classification. SMART classification.
Criteria for the choice of a method of purification and	Chromatographic techniques: gel filtration, ion exchange, affinity and hydrophobic
preliminary characterization.	interaction. Purification strategies. Preliminary characterization of the protein
	conformation: State of aggregation, compactness. Secondary structure and tertiary
	structure indicators. Quantification of proteins.
Experimental determination of the structure of proteins using	Crystallization techniques. Tools and strategies for diffraction data. Interpretation of
diffraction X.	the XRD. Obtaining and refinement of the molecular model. Parameters for calculating
	the convergence of the model. Modelling.
Interactions between biomolecules.	Interactions of proteins for the formation of complexes with proteins and other ligands.
	Experimental methods used to determine these interactions and their structure. The
	double hybrid method. The split-ubiquitin method. Pull-down. GST-Pull-down. FRET.
	EMSA trials. CHIP test. Other methodologies.

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A9 C2	1	41	42
Case study	A9 B2 B3 B4 C8	1	9	10
ICT practicals	A3 C3	1	3	4
Mixed objective/subjective test	A9	2	12	14
Personalized attention		5	0	5

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	The student will be able to attend the face-to-face sessions synchronously through TEAMS. Sessions will be recorded for
keynote speech	viewing asynchronously.
Case study	Case study consists of simulations and works using the problem-based learning methodology.
ICT practicals	ICT allow display of protein structure models and design interaction experiments.
Mixed	Combination of multiple choice questions and short of relationship questions
objective/subjective	
test	

	Personalized attention
Methodologies	Description

Case study	The personalized attention that is described in relation to these methodologies are conceived as moments of face-to-face
ICT practicals	student work with the teacher through TEAMS by involving a compulsory student participation.

		Assessment	
Methodologies	Competencies	Description	Qualification
Case study	A9 B2 B3 B4 C8	Students will have to answer questionnaires based on the case study.	15
Mixed objective/subjective test	A9	Test related to theoretical and practical knowledge. Students in blended mode, in addition to passing the test, must submit a series of tasks that will be requested throughout the course.	75
ICT practicals	A3 C3	Students in blended mode will carry out the practices through ICT on their own and will submit a report of the work carried out.	10

Assessment comments

To get honours preference will be given to the students evaluated at the

first opportunity in June.

For the students who request the DECEMBER ADVANCE CALL,

the current regulations will be applied, according to which the teaching guide of the current course governs.

Implications of PLAGIARISM in the qualification: The

current regulations will be applied, according to which the fraudulent

performance of the tests or evaluation activities will directly imply the

qualification of failure.

Sources of information

Basic	Banaszak, L. J. (2000). Foundations of structural biology. Academic Press.Berg, J. M., Tymoczko, J. L., Stryer. L.
	(2003). BIOQUÍMICA. 5ª Edición. Reverté. Branden, C. & amp; Tooze, J. (1998). INTRODUCTION TO PROTEIN
	STRUCTURE. 2nd edition Garland Publishing, Inc, New York.Cerdán Villanueva, M. E. (2005). Curso avanzado de
	proteínas y ácidos nucleicos. Universidade da Coruña.Creighton, T. E. (1993). PROTEINS: STRUCTURES AND
	MOLECULAR PROPERTIES, 2nd edition. W.H. Freeman & amp; Company, New York.Gómez-Moreno, C. & amp;
	Sancho, J. (Coords). (2003). ESTRUCTURA DE PROTEÍNAS. Ariel Ciencia, Barcelona. Lesk, A. M. (2000).
	INTRODUCTION TO PROTEIN ARCHITECTURE. THE STRUCTURAL BIOLOGY OF PROTEINS. Oxford University
	Press, Oxford. Nelson, D. L., Cox, M. M. (2000). LEHNINGER PRINCIPLES OF BIOCHEMISTRY. Worth
	Publishers.Rodes, G. (2000). Crystallography. Made Crystal Clear. Academic Press.

Complementary

§ Carter, Jr., C.V. y Sweet, R. M. (1997). Macromolecular Crystallography, parts A and B. Methods in Enzymology, vols. 276 y 277. Academic Press. NY.§ Casari, G., Sander, C., Valencia, A. (1995). A method to predict functional residues in proteins. Nature Struct. Biol., 2: 171178.§ Clore, G. M. y Gonenborg, A. M. (1998). New methods of structure refinement for macromolecular structure determination by NMR. Proc. Natl. Acad. Sci., 95, 58915898.§ Del Sol Mesa, A., Pazos, F., Valencia, A. (2003). Automatic methods for predicting functionally important residues. J. Mol. Biol., 326: 12891302.§ Ducruix, A., Giegé, R. (1999). Crystallisation of Nucleic Acids and Proteins. A Practical Approach, edn 2. Oxford University Press. Oxford.§ Eyrich, V. A., MartiRenom, M. A., Przybylski, D., Madhusudhan, M.S., Fiser, A., Pazos, F., Valencia, A., Sali, A. y Rost, B. (2001). EVA: continuos automatic evaluation of protein structure prediction servers. Bioinformatics, 17: 12421243.§ Ferentz, A.E. y Wagner, G. (2000). NMR spectroscopy: a multifaceted approach to macromolecular structure. Quarter Rev. Biophys. 33, 2965.§ Fersht, A. R. (1999). Structure and Mechanism in Protein Science, Freeman and Co., NY.§ Frank, J. (1996). Three dimensional electron microscopy of macromolecular assemblies. Academic Press, San Diego.§ Harris, E. L. V. y Angel, S. (eds.) (1999): Protein purification methods. A practical approach. IRL Press. Oxford.§ James, T. L., Dötsch, V. y Smith, U. (2001). Nuclear Magnetic Resonante of Biological Macromolecules. Part A and B. Methods Enzymol., 338, Academic Press, San Diego.§ Juan. D., Graña, O., Pazos, F., Fariselli, P., Casadio, R., Valencia, A. (2003). A neural network approach to evaluate Fold recognition results. Proteins Mar 1,(4): 50, 600608. § Kleanthous, C. (ed.) (2000). ProteinProtein Recognition. Oxford University Press, Oxford.§ Mayo, K. H. y Daragan, U. A. (2003). Protein dynamics using NMR relaxation. World Scientific, Nueva Jersey.§ McEwen, B. F. y Marcko, M. (2001). The emergente of electrón tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. Vol 49, 553563.§ Mc Pherson, A. (2002). Introduction to Macromolecular Crystallography. John Wiley and Sons. Inc., NY. § Naomi, E. C. (2004). Turning Protein crystallisation from an art into a science. Current Opinion in Structural Biology, 14: 577583.§ Sinha, N. y SmithGill, S. J. (2002). Protein structure to function via dynamics. Protein Peptid Letters, 9: 367377.§ Van Heel, M. (2000). Single particle electrón cryomicroscopy: towards atomic resolution. Q. Rev. Byophis. Vol. 33, 307369.§ Igor Stagljar and Stanley Fields (2002). Analysis of membrane protein interactions using yeast-based technologies ? REVIEW . Trends in Biochemical Sciences, 27: 559-563. § Sandor Vajda and Carlos J. Camacho (2004). Protein?protein docking: is the glass half-full or half-empty? Trends in Biotechnology, 22: 110-116. § Dobrin Nedelkov and Randall W. Nelson (2003). Surface plasmon resonance mass spectrometry: recent progress and outlooks ? REVIEW Trends in Biotechnology, 21: 301-305. § Takashi Ito, Tomoko Chiba and Mikio Yoshida (2001). Exploring the protein interactome using comprehensive two-hybrid projects ? REVIEW . Trends in Biotechnology, 19 (Supplement 1): 23-27. § Valerio Orlando (2000). Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation ? REVIEW . Trends in Biochemical Sciences, 25: 99-104.§ Dobrin Nedelkov and Randall W. Nelson (2003) Surface plasmon resonance mass spectrometry: recent progress and outlooks ? REVIEW . Trends in Biotechnology, 21: 301-305. § Philippe I. H. Bastiaens and Rainer Pepperkok (2000). Observing proteins in their natural habitat: the living cell ? REVIEW . Trends in Biochemical Sciences, 25: 631-637 Coordenadas: Protein Data Bank: http://www.rcsb.org/pdb BioMagResBank: http://www.brmb.wisc.edu Cambridge Crystall Data Centre: http://www.ccdc.cam.ac.uk Molecular Modelling DataBase: http://www.ncbi.nlm.nih.gov/structure Nucleic Acid Database: http://ndbserver.rutgers.edu:80/ MOOSE: http://db2.sdsc.edu/moose Molecules To Go ('R US): http://molbio.info.nih.gov/cgi-bin/pdb Enzyme Structures Database: http://www.ebi.ac.uk/thornton-srv/databases/enzymes Clasificación estructural CATH http://www.biochem.ucl.ac.uk/bsm/cath SCOP http://scop.mrc-lmb.cam.ac.uk/scop FSSP http://www2.embl-ebi.ac.uk/dali/fssp Programas de visualización molecular: Rasmol: http://www.umass.edu/microbio/rasmol Swiss-PdbViewer: http://www.expasy.ch/spdbv/ MOLMOL http://www.mol.biol.ethz.ch/wuthrich/software/molmol Cn3D http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml Chime http://www.umass.edu/microbio/chime Servidores de alineamientos de secuencias: BLAST http://www.ncbi.nlm.nih.gov/BLAST FASTA http://www.ebi.ac.uk/fasta33 Servidores de predicción y modelización: SWISS-MODEL http://expasy.ch/swissmod/ The PredictProtein Server http://ww.embl-heidelberg.de/predictprotein/predictprotein.html Center for Molecular Modeling: http://cmm.info.nih.gov/modeling/ GRAMM: http://reco3.musc.edu/gramm/ PQS (Probable Quat. Structure): http://msd.ebi.ac.uk/services/quaternary/quaternary.html

Recommendations	
Subjects that it is recommended to have taken before	
Molecular Techniques/610441002	
Advanced Cellular Biology/610441003	
Subjects that are recommended to be taken simultaneously	
Recombinant proteins and protein Engineering /610441013	
Proteomics/610441014	
Bioinformatics and Biomolecular models /610441021	
Subjects that continue the syllabus	
Project/610441023	
Other comments	
Green	
Campus Faculty of Sciences ProgramTo help	
achieve a sustainable immediate environment and comply with point 6 of the	
"Environmental Declaration of the Faculty of Sciences (2020)", the	
documentary works to be carried out in this subject will be requested in	
virtual format and computer support.	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.