

		Teaching Gui	le			
	Identifyir	ng Data			2023/24	
Subject (*)	Synthetic Applications of Organometallic compounds Code			610509112		
Study programme	Mestrado Universitario en Investi	gación Química e Qu	mica Industria	al (Plan 2020)		
		Descriptors				
Cycle	Period	Year		Туре	Credits	
Official Master's Degree	e 2nd four-month period	First		Optional	3	
Language	Spanish					
Teaching method	Face-to-face					
Prerequisites						
Department	Química					
Coordinador	Sarandeses Da Costa, Luis Alberto E-mail luis.sarandeses@udc.es			udc.es		
Lecturers	Perez Sestelo, Jose		E-mail	jose.perez.sestelo	jose.perez.sestelo@udc.es	
	Sarandeses Da Costa, Luis Albe	rto		luis.sarandeses@	udc.es	
Web	www.usc.es/gl/centros/quimica/curso/master.html					
General description	This matter is basic in the specia	Ity Synthetic Chemist	y because it s	studies the reactivity of	organometallic compounds ar	
	their applications in synthesis and	d catalysis. The conce	epts addresse	d in this matter are use	ful in others of other modules	
	such as Chemical Structure and Reactivity, Nanochemistry and New Materials and Biological Chemistry.			cal Chemistry.		
This matter is related to others such as Organometallic Compounds and Advanced Coordination Chemistry, w			nation Chemistry, which cover			
	general aspects of the structure and reactivity of the organometallic compounds and the coordination metal complexes.					
	The use of organometallic compounds and catalysis by transition metals are fundamental tools of today's synthetic					
	chemistry, both in their academic and industrial aspects. The current organic synthesis involves the development of more					
	selective and sustainable processes, objectives for which organometallic compounds and catalysis are frequently required.					

	Study programme competences / results
Code	Study programme competences / results
A1	Define concepts, principles, theories and specialized facts of different areas of chemistry.
A2	Suggest alternatives for solving complex chemical problems related to the different areas of chemistry.
A3	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A6	Design processes involving the treatment or disposal of hazardous chemicals
A8	Analyze and use the data obtained independently in complex laboratory experiments and relating them with the chemical, physical or
	biological appropriate techniques, including the use of primary literature sources
B1	Possess knowledge and understanding to provide a basis or opportunity for originality in developing and / or applying ideas, often within a
	research context
B2	Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary
	contexts related to their field of study.
B4	Students should be able to communicate their conclusions, and the knowledge and the reasons that support them to specialists and
	non-specialists in a clear and unambiguous manner
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous
B7	Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a
	research topic
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
B11	Apply correctly the new technologies to gather and organize the information to solve problems in the professional activity.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

To understand the basis of catalytic cycles from the point of view of reaction coordinates and potential energy surfaces.	AC1	BC5
	AC6	
	AC8	
To understand the applications in synthesis of the diversity of processes of formation of bonds mediated by organometallic	AC2	BC1
compounds.	AC3	BC2
	AC6	BC4
		BC7
		BC10
		BC11
Propose synthetic sequences with key disconnections based on synthetic processes of organometallic compounds.	AC2	BC1
	AC3	BC2
	AC6	BC4
		BC7
		BC11

	Contents
Торіс	Sub-topic
Topic 1. Energy principles and fundamentals of organometallic	? General concepts
catalytic cycles.	? Thermodynamics and kinetics of the catalytic cycle of reactions catalysed by
	transition metals.
	? Application: Pd catalyzed cross coupling; Synergy between computational and
	experimental results.
Topic 2. Cross-coupling reactions and Heck reaction.	? Cross-coupling reactions. Generalities. Leaving groups. Metals. Selectivity.
	? Carbon-carbon bond formation reactions: organometallic compounds of Li, Zn, Al,
	Zr, Sn, Cu; Compounds of B and Si; Other metals; Enolates.
	? Carbon-heteroatom bond formation reactions.
	? Heck reaction. Components of the reaction. Inter- and intramolecular reactions.
	Asymmetric Heck Reactions. Heck reactions with organometallic species.
Topic 3. Insertion reactions.	? Carbonylative reactions. Generalities. Mechanism.
	? Carbonylative coupling reactions.
	? Hydroformylation reactions.
	? Carbonylation reactions with carbonyl complexes.
	? Carboxylation.
	? Decarbonylative reactions and decarbonylative couplings.
	? Other insertion reactions with zirconium and titanium.
Topic 4. Reactions of n3-allyl complexes.	? Palladium n3-allyl complexes (1. Synthesis and properties; 2. Regioselectivity and
	stereoselectivity).
	? Allylic substitution reactions catalyzed by palladium complexes (1. Allylic alkylation;
	2. Amination, etherification and allyl reduction; 3. Cyclization reactions through alkene
	insertion processes; 4. Cycloaddition reactions via trimethylenemethane
	intermediates).
	? Allylic substitution reactions catalyzed by complexes of other transition metals
	(Iridium, Nickel, Iron, Molybdenum).
	? Alkylation reactions with alkynes and alenes catalyzed by Rh complexes.
Topic 5. Reactions of electrophilic complexes of alkenes,	? Alkyl insertion reactions and Heck, Suzuki, etc., tandem reactions.
alkynes, dienes and arenes.	? Insertion reactions mediated by other metals (Zr and Ti).
	? Electrophilic additions on alkenes and alkynes.
	? Reaction of Nicholas and Pauson-Khand.
	? Reactions of alkenes with palladium in high oxidation state.
	? Synthetic applications of n4-dienyl complexes and n6-arenes.

Topic 6. Reactivity of metal carbenes.	? Characteristics of carbenes.
	? Carbenes of transition metals. Structure and types.
	? Transformations involving carbenes of transition metals.
	? Olefin metathesis.
Topic 7. Activation reactions of C-H bonds.	? Introduction to the activation of C-H bonds: relevancy, difficulties and mechanisms of
	activation.
	? Reactions of insertion of carbenes and nitrenes
	? Ir-catalyzed borilation reactions
	? Functionalization of alkanes and arenes catalyzed by Pd(II): oxygenation, arylation,
	halogenation, oxidative Heck reaction.

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Seminar	A1 A2 A3 A6 A8 B1	7	18	25
	B2 B4 B5 B7 B10 B11			
Mixed objective/subjective test	A1 A2 A3 B2 B5	3	0	3
Guest lecture / keynote speech	A1 A8 B1 B2 B7 B10	12	33	45
	B11			
Personalized attention		2	0	2
(*)The information in the planning table is fo	r guidance only and does not	take into account the	heterogeneity of the stud	dents.

	Methodologies
Methodologies	Description
Seminar	Seminars held with teachers of the Master, or with professionals invited from industry, the administration or other universities.
	Interactive sessions related to the different subjects with debates and exchange of opinions with students.
	Resolution of practical exercises (problems, test questions, interpretation and processing of information, evaluation of scientific
	publications, etc.).
	Additionally, during the seminars the possibility of carrying out other methodologies is contemplated:
	- Works, individually or in groups, on scientific topics related to the different subjects of the Master.
	- Oral presentation of papers, reports, etc., including discussion with teachers and students.
	- Use of specialized computer programs and internet. Online teaching support (Virtual Campus).
Mixed	A final written exam is scheduled, which will allow to objectively evaluate the degree of assimilation and the ability to apply the
objective/subjective	contents of the subject by the student. The objective test will include a unique type of questions, which will be related to the
test	structure, reactivity and synthesis of organic compounds, and will allow to determine if the answers are correct.
Guest lecture /	Theoretical classes. Lectures (use of blackboard, computer, cannon), complemented with the tools of virtual teaching.
keynote speech	

	Personalized attention		
Methodologies	Description		
Seminar	Two individual or small group tutorials are programmed to check the comprehension of the subject and to complement the		
Guest lecture /	t lecture / student's formation through solving doubts and other questions.		
keynote speech			

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		

Seminar	A1 A2 A3 A6 A8 B1	Continuous evaluation will have a weight of 40% in the grade of the subject and will	40
	B2 B4 B5 B7 B10 B11	consist of the following components: problem solving and practical cases (15%), oral	
		presentation [(practical cases, problems), 10%] and oral questions during Course	
		(10%) and attendance and participation (10%).	
Mixed	A1 A2 A3 B2 B5	The final exam will cover all the contents of the subject.	60
objective/subjective			
test			

Assessment comments

The evaluation of this subject will be done through continuous evaluation and the completion of a final exam. Repeating students will have the same attendance regime for classes as those who study the subject for the first time. Continuous evaluation (N1) will have a 40% weight in the subject's qualification and will consist of the following components: problem solving and practical cases (15%), oral presentation [(practical cases, problems), 10%] and questions Oral during the course (10%) and attendance and participation (10%). The final exam (N2) will cover all the contents of the subject. The qualification of the student will be obtained as a result of applying the following formula: Final note = maximum (0.4 x N1 + 0.6 x N2) N1 being the numeric note corresponding to the continuous evaluation (scale 0-10) and N2 the numerical note of the final exam (scale 0-10). Students with recognition of part-time dedication and academic exemption exemption from attendance: They will be considered exempt from the master sessions, although they will be facilitated to attend the greatest possible number of seminars. If they cannot attend the seminars, the student will do a supervised project. This will apply to both opportunities. As stated in the different applicable regulations for university teaching, an attempt will be made to incorporate the gender perspective in this matter. Work will be done to identify and modify prejudices and sexist attitudes as well as situations of discrimination based on gender and actions and measures will be proposed to correct them and promote values of respect and equality. @font-face

{font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-536859905 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;

mso-ligatures:standardcontextual; mso-fareast-language:EN-US;}span.hwtze {mso-style-name:hwtze; mso-style-unhide:no;}span.rynqvb {mso-style-name:rynqvb; mso-style-unhide:no;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}div.WordSection1 {page:WordSection1;}

	Sources of information		
Basic	- Bates, R. (2012). Organic Synthesis Using Transition Metals, 2nd Ed Wiley		
	- Hegedus, L. S. (1999). Transition Metals in the Synthesis of Complex Organic Molecules, 2nd Ed University		
	Science Books		
Complementary	- Luther, G. W. (2016). Reactivity of Transition Metal Complexes: Thermodynamics, Kinetics and Catalysis, in		
	Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications. Wiley		
	- Cybulski, A.; Moulijn, J. A.; Stankiewicz, A. (2010). Novel Concepts in Catalysis and Chemical Reactors: Improving		
	the Efficiency for the Future. Wiley-VCH		
	- Ananikov, V. P. (2015). Understanding Organometallic Reaction Mechanisms and Catalysis: Computational and		
	Experimental Tools. Wiley-VCH		
	- Negishi, E., Ed. (2002). Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley		
	- De Meijere, A., Bräse, S., Oestreich, M. (2014). Metal-Catalyzed Cross-Coupling Reactions and More. Wiley-VCH		
	- Beller, M., Bolm, C. (2004). Transition Metals for Organic Synthesis, 2nd Ed Wiley-VCH		
	- Kazmaier, U. (2012). Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis.		
	Springer-Verlag		
	- Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th Ed Wiley		
	- Yu, JQ. (2016). Science of Synthesis: Catalytic Transformations via C-H Activation Vol. 1 & amp; 2. Thieme		

	Recommendations
	Subjects that it is recommended to have taken before
Industrial Processes and Sustainability/610	509104
Organometallic Chemistry/610509111	
Advanced Structural Determination/610509	103
Structure and Reactivity of Organic Compo	unds /610509114
	Subjects that are recommended to be taken simultaneously
Stereoselective Synthesis/610509113	
	Subjects that continue the syllabus
	Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.