		Teaching Guide		
	Identifying	Data		2023/24
Subject (*)	Preparation of Nanomaterials		Code	610509120
Study programme	Mestrado Universitario en Investiga	ación Química e Química Ind	ustrial (Plan 2020)	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 1st four-month period	First	Optional	3
Language	Galician			,
Teaching method	Face-to-face			
Prerequisites				
Department	Química			
Coordinador	Señaris Rodriguez, Maria Antonia E-mail m.senaris.rodriguez@udc.es			
Lecturers	Señaris Rodriguez, Maria Antonia E-mail m.senaris.rodriguez@udc.es		juez@udc.es	
Web				
General description	Introduction to the preparation of na	anomaterials, both inorganic	and organic nanomateria	ls. Key factors in the control and
	shape of nanomaterials. Relationsh	nips between shape and size	and their properties. Intro	oduction of the main applications
of nanomaterials.				

	Study programme competences / results
Code	Study programme competences / results
А3	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A9	Promote innovation and entrepreneurship in the chemical industry and in research.
B1	Possess knowledge and understanding to provide a basis or opportunity for originality in developing and / or applying ideas, often within a
	research context
В3	Students should be able to integrate knowledge and handle complexity, and formulate judgments based on information that was
	incomplete or limited, include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgments.
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous.
B7	Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a
	research topic
B8	Evaluate responsibility in the management of information and knowledge in the field of Industrial Chemistry and Chemical Research
В9	Demonstrate ability to analyze, describe, organize, plan and manage projects
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
C1	CT1 - Elaborar, escribir e defender publicamente informes de carácter científico e técnico
C3	CT3 - Traballar con autonomía e eficiencia na práctica diaria da investigación ou da actividade profesional.
C4	CT4 - Apreciar o valor da calidade e mellora continua, actuando con rigor, responsabilidade e ética profesional.

Learning outcomes			
Learning outcomes	Stud	y progra	ımme
	con	npetenc	es/
		results	
Describe the aspects of physical laws that predominate in the behavior of nanometer-sized systems.	AC9	BC1	CC3
		ВС3	
		BC8	
		BC9	
Define which construction methods of nanostructures should be chosen based on the desired properties.	AC3	BC1	CC1
		ВС3	
		BC5	
Describe some methods for the synthesis of nanoparticles.	AC3	BC7	CC1
	AC9	BC10	CC4

Describe some methods for surface modification of nanoparticles.	AC3	BC8	CC1
	AC9	BC9	CC4
		BC10	
Explain the phenomenon of self-assembly, describe the different procedures available to achieve this.	AC3	BC3	CC1
	AC9	BC5	CC3
		BC8	
Know the current and potential applications of nanotechnology.	AC3	BC1	CC1
	AC9	BC7	CC4
		BC8	
		BC10	

	Contents
Topic	Sub-topic
Theme 1.Introduction and historical perspective on advanced	This first topic will be a historical introduction on the development of nanomaterials. A
materials	classification of the materials will be established, as well as a brief description of the
	fields of activity of the different nanomaterials.
Theme 2. Strategies in the search for new materials	This topic will address the different strategies in the synthesis of nanomaterials, with
	special attention to those that allow us a control in the structure and composition.
Theme 3. Nanochemistry and nanomaterials	This topic will introduce the nanomaterials and the main methods of synthesis
Theme 4. Inorganic nanomaterials: metal, semiconductors,	This topic will introduce the main methods of synthesis of nanomaterials with special
magnetic oxides	emphasis on metallic, semiconductors, and magnetic oxides.
Theme 5. Organic Nanomaterials: Carbon Nanotubes,	In this topic we will introduce the main methods of synthesis of nanomaterials with
Graphene, Polymeric Materials	special emphasis on carbon nanotubes, graphene and polymeric materials.
Theme 6. Surface modification and hybrid materials	This topic will introduce the main methods of surface modification of nanomaterials.
	Different hybrid materials will also be introduced.

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Seminar	A3 A9 B1 B3 B5 B7	7	21	28
	B8 B9 B10 C1 C3 C4			
Supervised projects	A3 A9 B1 B3 B5 B7	3	6	9
	B8 B9 B10 C1 C3 C4			
Mixed objective/subjective test	A3 A9 B1 B3 B5 B7	2	0	2
	B8 B9 B10 C1 C3 C4			
Guest lecture / keynote speech	A3 A9 B1 B3 B5 B7	12	24	36
	B8 B9 B10 C1 C3 C4			
Personalized attention		0		0
(*)The information in the planning table is fo	r guidance only and does not	take into account the l	neterogeneity of the stud	dents.

	Methodologies	
Methodologies	Description	
Seminar	Seminars carried out with their own teaching staff, or with invited professionals from the business sector, administration or	
	other universities. Interactive sessions related to different subjects with discussions and exchange of opinions with students	
Supervised projects	Work in small groups that will have the purpose of studying a topic, a case, etc. Through the discussion among the members of the group.	
Mixed	Proof that will be made in the calendar agreed by the Faculty Board. Its objective is to contribute to the evaluation of the	
objective/subjective	knowledge and skills acquired by the students and the ability to relate to this and to obtain an overview of the subject.	
test		

Guest lecture /	In the master session the contents of the corresponding topics will be introduced, highlighting their most important aspects and
keynote speech	stopping particularly in the fundamental concepts and / or more difficult to understand for the students.

	Personalized attention
Methodologies	Description
Seminar	The teaching methodology proposed is based on the work of the student, who becomes the main responsible for its educational process.

		Assessment	
Methodologies	Competencies /	Description	
	Results		
Seminar	A3 A9 B1 B3 B5 B7	Valoraranse tanto as respostas dos alumnos como a súa participación nas	20
	B8 B9 B10 C1 C3 C4	correspondentes actividades presenciais. Ocasionalmente e a requirimento do	
		profesorado, o alumnado deberá entregar os boletíns de problemas que tamén	
		poderán ser avaliados.	
Supervised projects	A3 A9 B1 B3 B5 B7	Valoraranse tanto as respostas dos alumnos como a súa participación nas	25
	B8 B9 B10 C1 C3 C4	correspondentes actividades presenciais. Ocasionalmente e a requirimento do	
		profesorado, o alumnado deberá entregar informes que tamén poderán ser avaliados.	
Mixed	A3 A9 B1 B3 B5 B7	Consistirá nunha proba de conxunto que se celebrará ó final do cuadrimestre. Poderá	55
objective/subjective	B8 B9 B10 C1 C3 C4	constar tanto de preguntas de desenvolvemento, como de preguntas curtas ou de tipo	
test		test e de problemas que serán semellantes ós realizados ó longo do curso.	

Assessment comments

IMPORTANT NOTICE

According

to the current Teaching Organization Plan of the University of A Coruña, this academic year 2023-2024 this subject will be taught as a tutorial course with the following classroom hours: 7,5 P

General considerations:

- -It is very important to attend all classes.
- -It is essential to consult the bibliography and try to complete with advanced aspects the most fundamental concepts that are explained in the class.
- -The evaluation of this subject will be done through continuous assessment and the completion of a final exam.
- -The continuous evaluation will have a weight of 45% in the grade of the subject. The rest will be assigned to the final exam result.

Recommendations for evaluation

The

student should review the theoretical concepts introduced in the different topics using the support material provided by the teaching staff and the bibliography recommended for each topic. The degree of accuracy in the resolution of the proposed exercises provides a measure of the student's preparation to face the final exam of the subject. Those

students who find important difficulties in working the proposed activities should consult the teacher, in order that the teacher can analyze the problem and help solve those difficulties.

Sources of information

Basic	- G. A. Ozin (2008). Nanochemistry: A Chemical Approach to Nanomaterials. Royal Society of Chemistry
	- D. Vollath (2013). Nanomaterials: an introduction to synthesis, properties and applications. Wiley-VCH
	- Kenneth J. Klabunde (2009). Nanoscale materials in chemistry. Wiley-Interscience,
Complementary	- A.R. West (2014). Solid State Chemistry and its Applications. Wiley-VCH
	- C. N. R. Rao, Chintamani Nagesa Ramachandra Rao (1997). New Directions in Solid State Chemistry. Cambridge
	University Press
	- U. Schubert, N. Hüsing (2004). Synthesis of Inorganic Materials. Wiley-VCH
	- K. T. Ramesh (2009). Nanomaterials: Mechanics and Mechanisms. Springer-Verlag
	- C.N. R. Rao and B. Raveau (1998). Transition metal oxides. John Wiley & Dons

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments
The knowledge required for the completion of the master and those acquired in module 1.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.