

Teaching Guide					
Identifying Data 2023/24				2023/24	
Subject (*)	Advanced Atomic Techniques and Sensors Code			610509127	
Study programme	Mestrado Universitario en Investig	ación Química	a e Química Industria	al (Plan 2020)	
		Descr	iptors		
Cycle	Period	Ye	ar	Туре	Credits
Official Master's Degree	e 1st four-month period	Fir	rst	Optional	3
Language	Spanish				
Teaching method	Face-to-face				
Prerequisites					
Department	Departamento profesorado máster	rQuímica			
Coordinador	Moreda Piñeiro, Jorge		E-mail	jorge.moreda@u	ıdc.es
Lecturers	Bermejo Barrera, Pilar		E-mail		
	Moreda Piñeiro, Antonio jorge.moreda@udc.es		ldc.es		
	Moreda Piñeiro, Jorge				
Web	master-universitario-investigacion-quimica-quimica-industrial/20202021/tecnicas-atomicas-avanzadas-sensores-17772-170				
	18-3-98955				
General description	This subject will address the following objectives:				
	1. Complete acquisition of the different advanced atomic spectroscopic techniques, both in theoretical aspects and in their				
	practical application.				
	2. Complete acquisition of the different hybrid techniques used in metallomics and metalloproteomics, both in theoretical				
	aspects and in their application.				
	3. Complete acquisition of the different types of optical, electrochemical, thermal and mass sensors, theoretical aspects				
	and application examples				

	Study programme competences / results
Code	Study programme competences / results
A2	Suggest alternatives for solving complex chemical problems related to the different areas of chemistry.
A3	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A6	Design processes involving the treatment or disposal of hazardous chemicals
A7	Operate with advanced instrumentation for chemical analysis and structural determination.
A9	Promote innovation and entrepreneurship in the chemical industry and in research.
B2	Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary)
	contexts related to their field of study.
B4	Students should be able to communicate their conclusions, and the knowledge and the reasons that support them to specialists and
	non-specialists in a clear and unambiguous manner
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous.
B7	Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a
	research topic
B9	Demonstrate ability to analyze, describe, organize, plan and manage projects
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
C1	CT1 - Elaborar, escribir e defender publicamente informes de carácter científico e técnico
C3	CT3 - Traballar con autonomía e eficiencia na práctica diaria da investigación ou da actividade profesional.
C4	CT4 - Apreciar o valor da calidade e mellora continua, actuando con rigor, responsabilidade e ética profesional.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

AC2	BC2	CC3
AC7	BC5	
AC9	BC7	
AC2	BC2	CC1
AC7	BC4	
AC9	BC5	
	BC7	
AC2	BC2	CC4
AC3	BC4	
AC6	BC9	
AC7	BC10	
AC9		
	AC2 AC7 AC9 AC2 AC7 AC9 AC2 AC3 AC3 AC6 AC7 AC9	AC2BC2AC7BC5AC9BC7AC2BC2AC7BC4AC9BC5BC7BC4AC2BC2AC3BC4AC6BC9AC7BC10AC9S

Contents			
Торіс	Sub-topic		
1. ATOMIC TECHNIQUES	(1) Electrothermal atomic absorption spectrometry. (2) Continuous source atomic		
	absorption spectreometry. (3) Inductively coupled plasma atomic emisión		
	spectrometry. (4) Inductively coupled plasma mass spectrometry. (5) Atomic		
	fluorescence spectrometry. (6) Atomic X ray spectrometry.		
2. ALTERNATIVE SAMPLING TECHNIQUES	(1) Solid sampling (2) Slurry sampling (3) Vapour generation techniques Cold vapour		
	and covalent hydride generation). (4) Others solid sampling techniques (Laser		
	ablation)		
3. HYBRID TECHNIQUES IN THE ANALYSIS OF	(1) Liquid chromatography coupled with inductively coupled plasma atomic emission.		
ORGANOMETALLIC COMPOUNDS AND	(2) Liquid chromatography coupled with inductively coupled plasma mass		
METALOPROTEINS (METALLOMIC AND	spectrometry (3) Liquid chromatography coupled with atomic fluorescence		
METALOPROTEOMIC)	spectrometry (4) Gas chromatography coupled with inductively coupled plasma mass		
	spectrometry. (5) Capilar electrophoresis coupled with inductively coupled plasma		
	mass spectrometry. (6) Filed flow fractionation coupled with inductively coupled		
	plasma mass spectrometry		
TEMA 4. SENSORES	(1) Concepts. (2) Types of sensors. (3) Electrochemical sensors. (4) Optical sensors.		
	(5) Gas sensors. (6) Remote sensors		

Planning				
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Seminar	A2 B2 B4 B9 B10 C4	7	14	21
Supervised projects	A2 A3 A9 B2 B4 B5	2	8	10
	B7 B9 B10 C1 C3			
Objective test	A2 A3 A6 A7	2	0	2
Guest lecture / keynote speech	A2 A3 A7	12	30	42
Personalized attention		0	0	0
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.				

Methodologies		
Methodologies	Description	
Seminar	Seminars given by Master's teachers, and professionals from companies, public administration and other universities	
	Interactive sessions related to the different subjects with debates and exchange of opinions with students	
	Resolution of practical exercises (problems, test questions, interpretation and processing of information, evaluation of scientific	
	publications, etc.)	

Supervised projects	Study based on different sources of information	
	Oral presentation of papers, reports, etc., including discussion with teachers and students	
Objective test	Carrying out the different tests for verifying the acquisition of both theoretical and practical knowledge and the acquisition of	
	skills and attitudes	
Guest lecture /	Theoretical classes. Lectures (use of slate, computer, cannon), complemented with the tools of virtual teaching	
keynote speech		

Personalized attention		
Methodologies	Description	
Guest lecture /	The supervised works and problem solving will be carried out under the supervision of the teacher	
keynote speech		
Seminar	Doubts and work done, etc. will be reviewed by the teacher	
Supervised projects		

Assessment			
Methodologies	Competencies /	Description	Qualification
	Results		
Seminar	A2 B2 B4 B9 B10 C4	Seminars will be evaluated through continuous evaluation of the student's work and	15
		the individual resolution of problems and cases	
Supervised projects	A2 A3 A9 B2 B4 B5	Spervised projects involve the realization of a memory and an exposition r	10
	B7 B9 B10 C1 C3		
Objective test	A2 A3 A6 A7	Theoretical contents will be evaluated by means of a test that may include test	75
		with multiple choice, short questions and reasoned answer	

Assessment comments

-The student must review the theoretical concepts introduced in the different topics, using the reference manual and the summaries. The degree of success in solving the proposed exercises provides a measure of the student's preparation to face the final exam of the subject. Those students who encounter significant difficulties when working on the proposed activities should attend the teacher's tutoring hours, with the aim that he can analyze the problem and help solve these difficulties.

-Competence assessment system: Final exam: CB7; CB9; CB10; Problem solving and case studies: CG2; CG4; CG5; Completion of work and written reports: CG2; CG4; CG5; Oral presentation (works, reports, problems and practical cases: CG2; CT1; CT3; CT4; Continuous evaluation of the student by means of questions and oral questions during the course: CB7; CB9; CT1

-Indication referring to plagiarism and the inappropriate use of technologies in the development of tasks or tests: "In cases of fraudulent performance of exercises or tests, the provisions of the Regulations for the evaluation of students' academic performance and the review of assessments"

	Sources of information
Basic	- Skoog, Holler, Nieman (2008). Principios de Análisis Instrumental. Ed. Thonsom-Paraninfo
	- R. Keller, J. M. Mermet, M. Otto, H. M. Widmer, (2004). Analytical Chemistry, . Ed. Wiley
	- C. Cámara, C. Pérez-Conde (2011). Análisis Químico de Trazas. Ed. Síntesis
	- B. Welz, M. Sperling (1999). Atomic Absorption Spectrometry. Ed. Wiley
	- B. Welz, H. Becker-Ross, S. Florek, U. Heitmann (2004). High Resolution Continuum Source AAS. Ed. Wiley
	- J. D?dina, D. L. Tsalev (1995). Hydride Generation Atomic Absorption Spectrometry. Ed. Wiley
	- R. Cornelis (2003). Handbook of Elemental Speciation I/II. Ed. Wiley
	- C. Pérez Conde (1996). Sensores Ópticos. Universidad de Valencia
	- S. Alegret, M. del Valle, A. Merkoçi (2004). Sensores electroquímicos. Universidad Autónoma de Barcelona
Complementary	

Recommendations

Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

Recommendations for evaluationThe student must review the theoretical concepts introduced in the different topics, using the reference manual and the summaries. The degree of success in solving the proposed exercises provides a measure of the student's preparation to face the final exam of the subject. Those students who have significant difficulties when working on the proposed activities should attend the teacher?s tutoring hours, so that the teacher can analyze the problem and help solve those difficulties. It is very important, when preparing for the exam, to solve some of the exercises that appear at the end of each of the chapters of the reference manual.Recommendations for recoveryThe teacher will analyze with those students who do not successfully pass the evaluation process and, if they so wish, the difficulties encountered in learning the contents of the subject. It will also provide them with additional material (questions, exercises, exams, etc.) to reinforce the learning of the subject? It is highly recommended to attend the exhibition classes from day one, as the different topics in the program are linked to each other.? It is important to keep the study ?up to date?.? After reading a topic, it is useful to summarize the important points, identifying the basic issues to remember and making sure you know both their meaning and the conditions under which they can be applied.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.