

Teaching Guide							
Identifying Data 2023/24					2023/24		
Subject (*)	Crystallography and Symmetry			Code	610G04006		
Study programme	Grao en Nanociencia e Nanoteci	noloxía					
		Desci	riptors				
Cycle	Period	Ye	ear		Туре	Credits	
Graduate	2nd four-month period	Fi	rst	E	Basic training	6	
Language	SpanishGalician						
Teaching method	Face-to-face						
Prerequisites							
Department	Física e Ciencias da Terra						
Coordinador	Hernández Hernández, Armand		E-mail		armand.hernandez@udc.es		
Lecturers	Hernández Hernández, Armand		E-mail		armand.hernandez@udc.es		
	López Vicente, Manuel			manuel.lopez.vicente@udc.es			
	Moncunill Solé, Blanca blanca.moncunill@udc.es		udc.es				
Web			~				
General description	"Cristallography and Symmetry"	is a subject in tl	ne second semes	ster of th	ne first year of the Ba	achelor's Degree in	
	Nanoscience and Nanotechnology, which belongs to the Basic Training Module. The aim of this subject is to introduce						
	students to the fundamentals of point symmetry and spatial symmetry, familiarize them with the world of crystals and the						
	most common structures of crystalline solids, explore X-ray diffraction as a tool for crystal characterization, and examine						
	the relationship between crystallography and symmetry, and other disciplines. These knowledge and skills will provide the						
	necessary theoretical and practic	cal foundation fo	or students to dely	ve into t	the world of crystallir	ne nanomaterials and their	
	characterization through diffracto	ometric and spe	ctroscopic metho	ds in su	ibsequent subjects o	f the Nanoscience and	
	Nanotechnology degree.						

	Study programme competences / results
Code	Study programme competences / results
A3	CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así
	como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A5	CE5 - Conocer los rasgos estructurales de los nanomateriales, incluyendo las principales técnicas para su identificación y caracterización
A6	CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de
	fenómenos en la nanoescala.
A7	CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas,
	identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8	CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de
	la instrumentación y de los productos y nanomateriales.
B4	CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no
	especializado
B6	CG1 - Aprender a aprender
B7	CG2 - Resolver problemas de forma efectiva.
B8	CG3 - Aplicar un pensamiento crítico, lógico y creativo.
C3	CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su
	profesión y para el aprendizaje a lo largo de su vida
C7	CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a un
	desarrollo sostenible ambiental, económico, político y social.
C8	CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural
	de la sociedad

Learning outcomes

Learning outcomes		Study programme		
	con	npetenc	es/	
		results		
To identify the main crystalline forms, structures, growths, optics and systems.	A3	B6	C3	
	A5	B7	C8	
	A7	B8		
To describe and analyse the external shape of crystals, their structural patterns and their potential transformations	A3	B6	C3	
	A5	B7	C8	
	A7	B8		
To differentiate the main elements of symmetry and their nomenclature.	A5	B4	C3	
To recognise the fundamentals of diffraction.	A3		C3	
	A6		C7	
	A8		C8	
To solve basic crystallography problems.	A3	B7	C3	
	A5	B8		
	A7			

	Contents
Торіс	Sub-topic
Unit 1. Introduction.	Introduction to the world of crystals and symmetry. Its relevance in nanoscience and
	nanotechnology.
Unit 2. Cristal lattice theory.	Crystal lattices. Nodes, rows, lattice planes, and their notations. Unit cells. Reciprocal
	lattices. Lattice spacing. Exercises and problems.
Unit 3. Symmetry of crystals and molecules I: Point and	Concept of symmetry. Point symmetry operators. Applications of point symmetry.
spatial symmetry.	Bravais lattices. Introduction to spatial symmetry. Translations. Glide planes. Helical
	axes. Exercises and practical examples.
Unit 4. Symmetry of crystals II: Group theory.	Fundamentals of group theory. Description, nomenclature, and representation of Point
	Group of Symmetry. Molecular and crystal symmetry. Stereographic projection.
	Problems resolution.
Unit 5. Crystal Morphology and Properties of Crystals.	Shapes and habits. Mechanisms of crystal growth. Physical properties. Crystalline
	optics. Optical properties and structure of minerals. Problems resolution.
Unit 6. Crystal Chemistry. Introduction to X-ray diffraction.	Basic concepts of radiation-matter interaction. Bragg's law. X-ray powder diffraction
	and its utility in the study of crystalline solids.

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A3 A5 A7 B4 B7 B8	28	42	70
	C8			
Laboratory practice	A5 A6 A7 A8 B6 B7	12	12	24
	B8 C3 C7			
Workshop	A3 A5 B6 C7 C3	10	43	53
Objective test	A3 A5 A7 B4 B7 B8	2	0	2
	C8			
Personalized attention		1	0	1
(*)The information in the planning table is fo	r quidance only and does not	take into account the l	heterogeneity of the stur	lents

ole is for guidance only and does not take into account the heterogeneity of the students. (*) The information in the p IY I

	Methodologies
Methodologies	Description

Guest lecture /	In the lectures, the content of the respective topics will be introduced, highlighting the most important aspects and focusing
keynote speech	particularly on fundamental concepts or those that may be more challenging for students. These are interactive sessions
	where students are encouraged to ask questions and seek clarification of ideas or concepts.
Laboratory practice	Preparation and study of crystalline substances. Interpretation of results using PC software. Use of morphological and
	structural models of crystals, as well as an introduction to characterization through X-ray diffraction. Students will keep a
	laboratory notebook in which they will describe their work in the lab, analyze the results, and draw the main conclusions.
Workshop	An eminently practical training activity designed with the aim of focusing on those aspects of the subject that are more difficult
	to understand. The work will be carried out individually or in groups under the guidance of the teaching staff.
Objective test	Tests will be conducted, comprising both open-ended and multiple-choice questions, as well as problem-solving exercises that
	will be like those done throughout the course. The aim is to assess the level of knowledge and skills gained by students and
	their ability to relate them and get an overall understanding of the subject.

	Personalized attention
Methodologies	Description
Laboratory practice	The proposed teaching method is based on the work of the student, who becomes the main responsible for his/her own
Workshop	educational process. In order to optimize the effort of the student and get guidance during the process, it is very important to
Objective test	achieve close and constant student-professor interaction. Through this interaction and the different evaluation activities, the
Guest lecture /	teacher will determine to what extent the student is achieving the objectives proposed in each unit and guide them. This
keynote speech	guidance will be carried out through individual interviews that will take place during the tutorial hours of the teacher and/or at
	the most convenient times for the students. Obviously, apart from these tutorials proposed by the teaching staff, students may
	attend tutorials at their own request as often as they wish and when it is convenient for both students and teaching staff.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	A5 A6 A7 A8 B6 B7	We will evaluate the following aspects of laboratory work:	20
	B8 C3 C7	- Work organization and safety.	
		- Attitude, scientific curiosity, and degree of involvement in the work.	
		- Quality of results interpretation.	
		- Quality of the final report (laboratory notebook).	
Workshop	A3 A5 B6 C7 C3	Both student responses and individual or group participation in the corresponding	10
		face-to-face activities will be graded. Occasionally, at the request of the teacher,	
		students may be required to submit problem sets, which will also be evaluated.	
Objective test	A3 A5 A7 B4 B7 B8	Exams will be conducted to assess the content of the subject.	70
	C8		

Assessment comments

The evaluation of the subject is divided as follows:

- First test: 25% (Units 1, 2)

- Second test: 45% (30% Units 3, 4, 5; 15% Unit 6)

- Laboratory practical: 20%
- Seminars and Workshops: 10%

The evaluation cannot be considered positive if the student has not attended all laboratory classes.

Honors will be granted primarily to students who pass the subject on the first attempt. They will only be awarded in the "second chance" if the maximum number of honors has not been reached in the first attempt.

Students who do not pass the subject on the first attempt will be evaluated in the official exams of the Second Chance. In this session, they will be evaluated in the same way (percentages) through exams covering theoretical and practical contents, as well as the submission of seminar works. To receive the grade of "NO SHOW," students must not have participated in more than 25% of the scheduled evaluative activities.

Students who benefit from "recognition of part-time dedication and academic exemption from attendance" in accordance with UDC regulations must attend laboratory practices.

The final grade for these students will consist of two parts: the grade obtained in the laboratory practices, which will contribute 20% to the final grade, and the objective test, which will account for the remaining 80%. These grading percentages will be applied to both chances.

In exceptional circumstances that can be objectively demonstrated and properly justified, the responsible faculty may fully or partially exempt any student from participating in the continuous evaluation process. Students in this situation must pass a specific exam that leaves no doubt about the acquisition of the subject's competencies.

Once fraudulent completion of tests or evaluation activities is confirmed, the student will directly receive a failing grade for the corresponding academic year, whether the offense occurred in the first or second chance. If necessary, their grade in the first chance will be modified accordingly.

According to the "Regulations governing the study dedication regime for undergraduate students at UDC" (Art. 3.be 4.5) and the "Rules for evaluation, review, and appeals of grades for undergraduate and master's studies" (Art. 3 and 8b), students with recognition of part-time dedication and academic exemption from attendance must be able to participate in a training methodology and associated teaching activities that allow them to achieve the training objectives and competencies of the subject. Therefore, they will take part in a personalized system of guidance and evaluation tutorials that will serve to guide their independent work and monitor their progress throughout the course, as well as assess the level of competency development achieved.

During the tutoring sessions, aspects related to the subject's content will be addressed, as well as the joint review of submitted assignments.

	Sources of information
Basic	- Sands, Donald E. (1974). Introducción a la cristalografía. Barcelona, Reverté
	- Kettle, Sidney F.A. (2007). Symmetry and structure readable group theory for chemists. Hoboken: John Wiley
	- Borchardt-Ott, Walter (2011). Crystallography : an introduction . Berlin, Springer
	- Dept. de Cristalografía y Biol. Estruc. , CSIC (2020). Crystalografía.
	- Hargittai, István (1995). Symmetry through the eyes of a chemist. New York : Plenum Press
	- Hammond, C (2009). The Basics of crystallography and diffraction. Oxford University Press
	- Klein, C; Hurlbut, C.S. Jr. (1996-1997). Manual de mineralogía basado en la obra de J.D. Dana. Vol. 1 Barcelona,
	Reverté
	- Bloss, F.D. (1994). Crystallography and crystal chemistry: an introduction. Washington, Mineralogical Society of
	America

Complementary	- Müller, Ulrich (2013). Relaciones de simetría entre estructuras cristalinas : aplicaciones de la teoría de grupos
	cristalográficos en cristaloquímica. Madrid
	- DAVID J. WILLOCK (2009). Molecular Symmetry. Willey
	- Giacovazzo, C (2011). Fundamentals of crystallography. Oxford ; New York : Oxford University Press
	- Amorós, J.L. (1990). El Cristal : morfología, estructura y propiedades físicas. Madrid, Ed. Atlas
	- Nesse, W.D. (2009). Introduction to optical mineralogy. New York : Oxford University Press
	- Amigo, J.M. et al. (1981). Cristalografía Madrid, Rueda.

Recommendations
Subjects that it is recommended to have taken before
Chemistry: Structure and Bonding/610G04005
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Advanced Crystallography/610G04042

Techniques of Characterisation of Nanomaterials 2/610G04030

Techniques of Characterisation of Nanomaterials 1/610G04025

Solid State/610G04022

Spectroscopy/610G04017

Other comments

It is recommended to have completed and passed the course "Bonding and Structure" (610G04005). Attendance and participation in lectures are highly recommended. & hosp; Students should be able to write, synthesize, and present their work organized, as well as have basic computer skills (Internet use, text processing, presentations, etc.). & hosp; Program of the GreenCampus Faculty of Sciences & hosp; To contribute to an immediate sustainable environment and comply with point 6 of the "Environmental Declaration of the Faculty of Sciences (2020)," the documentary work carried out in this subject will: & hosp; a) Be predominantly requested in virtual format and electronic support. & hosp; b) If printed: & hosp; Plastics will not beused. & hosp; Double-sided printing will be employed. & hosp; Recycled paper will be used. & hosp; Drafts will be avoided. & hosp; Incorporation of a gender perspective & hosp; As stated in the various applicable regulations for university teaching, the gender perspective must be integrated into this subject (using non-sexist language, using bibliography from authors of both genders, encouraging the participation of male and female students in classroom...).- Efforts will be made to identify and modify sexist biases and attitudes, and the environment will be influenced to change them and promote values of respect and equality.- Situations of gender discrimination should be identified, and actions and measures will be proposed to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.