		Teaching	g Guide		
	Identifying	Data			2023/24
Subject (*)	Structural Biochemistry		Code	610G04019	
Study programme	Grao en Nanociencia e Nanotecno	loxía			
	·	Descri	ptors		
Cycle	Period	Yea	ar	Туре	Credits
Graduate	2nd four-month period	Seco	ond	Obligatory	6
Language	Spanish				
Teaching method	Face-to-face				
Prerequisites					
Department	Bioloxía				
Coordinador	Vizoso Vázquez, Ángel José E-mail a.vizoso@udc.es			S	
Lecturers	De Castro De Antonio, María Euge	enia	E-mail	m.decastro@ud	c.es
	Pérez Martínez, José Manuel			jose.manuel.per	ez@udc.es
	Rey Souto, Cora			cora.rey.souto	
	Saavedra Bouza, Almudena			almudena.saave	edra@udc.es
	Vizoso Vázquez, Ángel José	ez, Ángel José a.vizoso@udc.es			S
Web	https://campusvirtual.udc.gal				
General description	The Structural Biochemistry course is fundamental, from a basic point of view, to understand the main chemical,				
	biophysical and structural properties of biological macromolecules and the relationship between these properties and the				
	different functions they perform. The knowledge acquired will be essential for other subjects of the Degree in Nanoscience				
	in Nanotechnology.				

	Study programme competences
Code	Study programme competences
А3	CE3 - Reconocer y analizar problemas físicos, químicos, matemáticos, biológicos en el ámbito de la Nanociencia y Nanotecnología, así
	como plantear respuestas o trabajos adecuados para su resolución, incluyendo el uso de fuentes bibliográficas.
A6	CE6 - Manipular instrumentación y material propios de laboratorios para ensayos físicos, químicos y biológicos en el estudio y análisis de
	fenómenos en la nanoescala.
A7	CE7 - Interpretar los datos obtenidos mediante medidas experimentales y simulaciones, incluyendo el uso de herramientas informáticas,
	identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiadas.
A8	CE8 - Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de
	la instrumentación y de los productos y nanomateriales.
В3	CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para
	emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
B4	CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no
	especializado
В6	CG1 - Aprender a aprender
B7	CG2 - Resolver problemas de forma efectiva.
В8	CG3 - Aplicar un pensamiento crítico, lógico y creativo.
C3	CT3 - Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su
	profesión y para el aprendizaje a lo largo de su vida
C6	CT6 - Adquirir habilidades para la vida y hábitos, rutinas y estilos de vida saludables
C7	CT7 - Desarrollar la capacidad de trabajar en equipos interdisciplinares o transdisciplinares, para ofrecer propuestas que contribuyan a u
	desarrollo sostenible ambiental, económico, político y social.
C8	CT8 - Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural
	de la sociedad

Learning outcomes

Learning outcomes	Stud	y progra	amme
	СО	mpeten	ces
Identify the main biomolecules, their structure and function.	A3	В3	
		B4	
		B7	
Recognize the principles of enzymology.	A3	В3	С3
	A7	B4	
		B7	
Solve basic structural biochemistry problems.	A3	В3	C3
	A6	B4	C7
	A7	B6	C8
		B7	
		B8	
Apply the main biochemical techniques for the isolation, purification and characterization of biomolecules.	A6	В3	C6
	A8	B4	C7
		B8	C8

	B8 (C8		
	Contents			
Topic	Sub-topic			
Module 1. Introduction to Biochemistry	Concept, origins and evolution of Biomolecules. Functional groups, chemical bond	S		
	and stereochemistry. Biomolecules in polar solvents: ionization of water, ionic bala	ince		
	and buffer systems. Thermodynamic processes in biochemistry.			
Module 2. Structure and function of biomolecules:	2.1. Structure and function of amino acids and proteins: Type of proteins and			
carbohydrates, lipids, nucleic acids, amino acids and proteins. $ \\$	functions. Structure and properties of two amino acids. Classification. Protein			
	structuring levels. peptide bond. Primary structure and amino acid sequence of			
	proteins. Protein secondary structure: description and prediction. Concept of protein	in		
	domain and folding. Tertiary and quaternary structure of proteins: characteristics a	nd		
	classification. Dynamics and folding of proteins. Relationship between structure an	ıd		
	function in proteins.			
	2.2. Structure and function of carbohydrates: Classification. Monosaccharides:			
	description, structure and physical and chemical properties. O-glycosidic bond.			
	Oligosaccharides: nomenclature, description, structure and properties.			
	polysaccharides. Glycoconjugates: proteoglycans, glycoproteins and glycolipids.			
	Formation and functionalization of nanostructures based on carbohydrates.			
	23. Structure and function of lipids: Type of lipids and functions. Classification,			
	physical-chemical properties, structure and biological importance of fatty acids,			
	cerides, glycerides, phosphoglycerides. sphingolipids, terpenes and steroids. pyrro	olic		
	lipids. Cholesterol and derivatives. Lipoproteins. Fat-soluble vitamins. Formation at	nd		
	functionalization of lipid-based nanostructures.			
	2.4. Structure and function of nucleic acids: nature and function. Nucleotides, struc	cture		
	and properties. Phosphodiester bond and primary structure of nucleic acids. Watso	on		
	and Crick model and alternative structures of deoxyribonucleic acids. Types and			
	structure of ribonucleic acids. Formation and functionalization of nanocomplexes			
	based on nucleic acids.			

Module 3. Enzymology: Enzymes, enzyme kinetics and	General properties. Classification and nomenclature of enzymes. Effects of catalysts
enzyme regulation.	on chemical reactions. Activation energy and transition state. Enzyme cofactors,
	coenzymes and the role of vitamins. The active site: three-dimensional structure and
	enzyme-substrate coupling. Enzyme mechanisms. Acid-base, covalent, electrostatic
	and metal ion catalysis. Proximity and orientation effects. Reaction speed and
	activation energy: concepts, calculations and units. Units of enzymatic activity. Effect
	of enzyme concentration. Enzymes used in clinical analysis, in the diagnosis of
	diseases or as therapeutic agents.
Module 4. Biochemical techniques for the isolation and	General aspects of the methodology in biochemistry. The biological material used in
characterization of biomolecules.	biochemistry. Fractional precipitation and centrifugation. Chromatographic,
	electrophoretic and spectroscopic techniques. Dialysis and ultrafiltration. Radioactivity
	and isotopic techniques in biochemistry.
Lab work	1- Cell Culture + Work with molecular models: monosaccharides and peptides.
	2- Affinity chromatography + SEC
	3- SDS-PAGE electrophoresis + protein quantification
	4- Measurements of enzymatic activity
Use of bioinformatic tools	1- Databases
	2- Multiple Sequence Alignment
	3- Modeling of structures
	4- Docking

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A3 A8 B3 B6 C8	28	70	98
Laboratory practice	A6 B3 B4 C3	15	5	20
ICT practicals	A3 A7 B3 B4 B7 B8	8	8	16
	C6 C7			
Mixed objective/subjective test	B3 B4 C6	0	10	10
Personalized attention		6	0	6

	Methodologies
Methodologies	Description
Guest lecture /	The subjects of the subject will be taught by the professors and all the presentations or other documentation will be made
keynote speech	available to the students on the Virtual Campus.
Laboratory practice	A series of activities will be carried out in the practice laboratory, so that students learn to handle scientific instruments and
	basic procedures in Biochemistry and Molecular Biology. A brief memory will be delivered at the end of them.
ICT practicals	A series of activities will be carried out in the computer room, so that students learn to handle different databases and
	computer tools in the field of protein structural biology. A practical group work will be proposed once the necessary knowledge
	has been acquired.
Mixed	Written test used to evaluate learning, and that can combine different types of questions: multiple choice, association,
objective/subjective	explanatory or calculation questions and problem solving.
test	

Personalized attention		
Methodologies	Description	
ICT practicals	CT practicals The schedule of tutorials will be specified at the beginning of the course. Students will also be able to request tutorials and	
Laboratory practice	oratory practice answer specific questions by email.	

		Assessment	
Methodologies	Competencies	Description	Qualification
ICT practicals	A3 A7 B3 B4 B7 B8	Attendance at the training sessions is considered a COMPULSARY and	15
	C6 C7	PRESENTIAL activity to pass the subject.	
		The evaluation will consist of the group elaboration of a text analyzing an amino acid	
		sequence selected by the teacher. The quality of the work, the adequacy in the	
		graphic representation of data, interpretation of results, as well as the ability to discuss	
		them, will be evaluated, for which the use of scientific language and correct and	
		contrasted bibliographic information will be considered a necessary condition.	
Mixed	B3 B4 C6	Evaluation of the Theoretical knowledge (test, definitions, problems).	70
objective/subjective			
test			
Laboratory practice	A6 B3 B4 C3	Laboratory practices are considered a COMPULSARY activity to pass the course.	15
		The evaluation will consist of the preparation of an internship report where the quality	
		of the work, the adequacy in the graphical representation of data, interpretation of	
		results, as well as the ability to discuss these will be considered, for which the	
		following will be considered a necessary condition: use of scientific language and	
		correct and contrasted bibliographic information.	

Assessment comments

-LABORATORY PRACTICES are compulsory. Students who do not complete ALL the practices without a duly justified reason prevent them from passing the subject. OFFICIAL CHANCE FOR JUNE A.-To pass the subject it will be necessary to reach 45% of the points, in each of the Evaluable Parts: Objective Test, Laboratory Practices and ICT Practices. B.-HONOURS ENROLLMENT: Those students who take the first opportunity (official exam in June) will have priority to apply for MH. JULY OFFICIAL OPPORTUNITY A.-To pass the subject it will be necessary to reach 45% of the points, in each one of the Evaluable Parts: Objective Test, Problem Solving and Laboratory Practices. Final Qualification, in the Minutes: In any of the 2 Options: June or July, ONLY the qualifications of all the Parties (Objective Test, Laboratory Practices and ICT Practices) will be added if they all reach 45% of their value. If this percentage is not reached in any of them, only the note of 4 will appear in the Minutes. CONSIDERATION OF NOT PRESENTED (NP): 1st Opportunity in June: The student who does not appear for the objective test on the official date. 2nd Opportunity of July: A NOT PRESENTED will apply when the student does not appear for any of the evaluable parts. Exceptional cases: Exceptionally, in the event that the student, for duly justified reasons, has not been able to take all the continuous assessment tests, the teacher(s) will take the measures that he/she deems appropriate for this purpose. .-For students with partial dedication or exemption from attendance, a specific global assessment exam will be held in the June and July sessions.

	Sources of information
Basic	- Stryer, L., Berg, J.M. y Tymoczko, J.L. (2015). Bioquímica, 7ª ed Ed. Reverté
	- Feduchi, E., Romero, C.S., Yáñez, E., García-Hoz Jiménez, C (2021). Bioquímica. Conceptos esenciales. 3a ed
	Editorial Médica Panamericana
	- David L. Nelson, Michael M. Cox. (2018). Lehninger Principios de Bioquímica. 7a ed Ed. Omega
	- Mathews CK, Van Holde KE, Appling DR y Anthony-Cahill SJ (2013). Bioquímica, 4ª ed Ed. Pearson
Complementary	- TERESE M. BERGFORS (2009). PROTEIN CRYSTALLIZATION 2a ed International University Line
	- Stephenson F.H. (2012). Cáculo en Biología molecular y Biotecnología. 2a ed. Ed Elsevier España.
	Voet, D., Voet, J.G, Pratt, C.W. (2016). Fundamentos de Bioquímica. 4a Ed Médica Panamericana
	- Smith, C. A. y Wood, E. J. (1997). Moléculas biológicas Ed. Addison-Wesley Iberoamericana.
	- Bernhard Rupp (2009). Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology 1a
	ed Garland Science
	Cibertexto de Biomoléculas: http://www.ehu.es/biomoleculas/Base de datos Lípidos:http://lipidbank.jpBase de datos
	Ácidos Nucleicos:http://ndbserver.rutgers.eduBase de datos Proteínas:https://www.rcsb.orgCurso cristalografía
	Proteínas: https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html

Recommendations

Subjects that it is recommended to have taken before

Chemistry: Equilibrium and Change/610G04008 Fundamentals of Mathematics/610G04001

Cell Biology/610G04003

Chemistry: Structure and Bonding/610G04005 Integrated Basic Laboratory/610G04004

Subjects that are recommended to be taken simultaneously

Thermodynamics: Equilibrium and Phases/610G04018

Instrumental Analysis/610G04014

Spectroscopy/610G04017

Subjects that continue the syllabus

Advanced Crystallography/610G04042

Nanotechnology in Pharmacy/610G04043

Molecular Machines/610G04036

Nanotechnology in Medicine/610G04037

Kinetic and Catalysis/610G04026

Fundamentals of Biotechnology/610G04029

Molecular and Metabolic Biochemistry/610G04023

Other comments

> Regarding the Green Campus program of the Faculty of Sciences:- In order to contribute to the achievement of an immediate sustainable environment and compliance with point 6 of the "Environmental Declaration of the Faculty of Sciences (2020)", the documentary work carried out in this matter will be requested for virtual results. format and computer support.> Regarding gender equality and prevention and eradication of sexual violence:- Secondly, the different regulations applicable to university teaching should incorporate the gender perspective in this matter (use non-sexist language, use bibliography of authors of both sexes, encourage the participation of students in class). ...)- Work will be done on the identification and modification of prejudices and sexist attitudes and the environment will be influenced to modify them and promote values of respect and equality.- Situations of discrimination based on gender must be detected and actions and measures must be foreseen to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.