		Teaching Guide		
	ldentifying I	Data		2023/24
Subject (*)	Analysis of biomedical images		Code	614522010
Study programme	Mestrado Universitario en Bioinforma	ática para Ciencias da Sa	úde	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degre	e 2nd four-month period	First	Obligatory	6
Language	Spanish			'
Teaching method	Face-to-face			
Prerequisites				
Department	Ciencias da Computación e Tecnolo	xías da InformaciónComp	outación	
Coordinador	Barreira Rodriguez, Noelia	E-ma	noelia.barreira	@udc.es
Lecturers	Barreira Rodriguez, Noelia	E-ma	noelia.barreira	@udc.es
	Novo Bujan, Jorge		j.novo@udc.es	
	Ramos García, Lucia		I.ramos@udc.e	S
Web		·		
General description	This course presents introductory me	edical image processing a	and analysis techniques. It	presents basic concepts about
	image processing. Topics include da	ata acquisition, imaging, fil	tering, image segmentanti	on and registration. The focus o
	the course is to provide a global pers	spective and practical exp	erience in the field.	

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Ability to know the scope of Bioinformatics and its most important aspects
A2	CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
A4	CE4 - Ability to acquire, obtain, formalize and represent human knowledge in a computable form for the resolution of problems through a
	computer system in any field of application, particularly those related to aspects of computing, perception and action in bioinformatics
	applications
A6	CE6 - Ability to identify software tools and most relevant bioinformatics data sources, and acquire skill in their use
B1	CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas,
	often in a context of research
B2	CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
	broad (or multidisciplinary) contexts related to their field of study
B5	CB10 - Students should possess learning skills that allow them to continue studying in a way that will largely be self-directed or
	autonomous.
B6	CG1 -Search for and select the useful information needed to solve complex problems, driving fluently bibliographical sources for the field
B7	CG2 - Maintain and extend well-founded theoretical approaches to enable the introduction and exploitation of new and advanced
	technologies
C3	CT3 - Use the basic tools of the information technology and communications (ICT) necessary for the exercise of their profession and
	lifelong learning
C6	CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to.

Learning outcomes			
Learning outcomes	Study	y progra	amme
	competences /		
		results	
Understand the medical imaging modalities and their significance		BJ1	
Understand the basic concepts of image processing		BJ5	CJ3
		BJ6	
Design and evaluate medical analysis techniques		BJ2	CJ6
		BJ7	

	Contents
Topic	Sub-topic
Introduction to digital imaging.	Adquisition models.
	Quality metrics.
	Color spaces.
	Histograms.
Image processing.	Enhancement.
	Edge detection.
	Segmentation.
	Morphological operators.
Image registration and fusion.	Intensity vs features.
	Similarity measures.
	Multimodal methods.
Validation of medical image analysis methodologies	Measures for quality assessment
	Training and testing methods
	Statistical tests

	Plannir	ng		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A4 B1	16	16	32
Laboratory practice	A2 A6 B2 B7 C3	16	32	48
Research (Research project)	A2 B2 B5 B6	16	32	48
Practical test:	A2 A6	0	16	16
Objective test	A1 A2 B1 B2 C6	3	0	3
Personalized attention		3	0	3

	Methodologies
Methodologies	Description
Guest lecture /	Lectures with the use of audiovisual aids. Questions will be raised in order to transmit the knowledge and enforce the learning.
keynote speech	
Laboratory practice	The aim is to solve common problems in medical imaging using the methods explained in the lectures.
Research (Research	Proposal of a biomedical imaging problem in which learner is tasked with identifying problem, articulating specific nature of
project)	problem, analysing it, interpreting results, and reaching appropriate conclusion.
Practical test:	Practical application of specific techniques or procedures already studied in the keynote lectures during the semester.
Objective test	Test with questions about the theoretical contents of the subject as well as practical problems.

	Personalized attention
Methodologies	Description
Research (Research	Teachers will answer the doubts during the laboratory practice and they will provide personal advising for the supervised
project)	projects.
Practical test:	
Laboratory practice	
Objective test	

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		

Research (Research	A2 B2 B5 B6	Suitability of the proposed solutions to the problems. Quality of the obtained results.	30
project)		Comprehension of the employed techniques.	
Practical test:	A2 A6	Suitability of the solutions to the practical excercises proposed during the semester.	20
Laboratory practice	A2 A6 B2 B7 C3	Suitability of the proposed solutions to the problems. Quality of the obtained results.	20
		Comprehension of the employed techniques.	
Objective test	A1 A2 B1 B2 C6	Written test with theoretical questions and practical problems to be solved.	30

Assessment comments

- Students will pass the subject if the sum of their grades in all the assessment assignments and tests is, at least, 50%.- Students will get a No show if they do not submit any of the assignments nor attend the objective test.- The practical exercises proposed during the semester can not be retaken in the second chance. - In the second chance, students who failed the subject in the first chance can submit the unsubmitted/failed laboratory practices and research project as well as attend the objective test.ACADEMIC EXEMPTION For all those students with half time dedication and academic exemption specific considerations will be taken.

	Sources of information
Basic	- Rafael C. González, Richard E. Woods (2010). Digital image processing. Upper Saddle River (New Jersey) :
	Pearson-Prentice Hall, [2010]
	- Milan Sonka, Vaclav Hlavac, Roger Boyle (2014). Image processing, analysis and machine vision. Pacific Grove,
	California : Brooks/Cole Publishing Company,
Complementary	- David A. Forsyth, Jean Ponce (2012). Computer vision : a modern approach. Boston : Pearson
	- Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Springer (draft online)

Recommendations
Subjects that it is recommended to have taken before
Introduction to programming/614522001
Subjects that are recommended to be taken simultaneously
Probability. statistics and elements of biomathematics/614522007
Foundations of Artificial Intelligence/614522003
Subjects that continue the syllabus
Advanced medical visualization/614522019
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.