		Teaching Guide		
	Identifying	Data		2023/24
Subject (*)	Data structures and algorithmics for	biological sequences	Code	614522013
Study programme	Mestrado Universitario en Bioinform	nática para Ciencias da Saúd	de	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 2nd four-month period	First	Obligatory	6
Language	SpanishEnglish			
Teaching method	Face-to-face			
Prerequisites				
Department	Ciencias da Computación e Tecnolo	oxías da InformaciónCompu	tación	
Coordinador	Ladra González, Susana	E-mail	susana.ladra@	udc.es
Lecturers	Ladra González, Susana	E-mail	susana.ladra@	udc.es
	Silva Coira, Fernando fernando.silva@udc.es		@udc.es	
Web				
General description	This course introduces the basics of	f the algorithms and data str	uctures that are common	ly used in the field of
	computational biology.			

Cturk, many many and analysis of many to
Study programme competences / results
Study programme competences / results
CE1 - Ability to know the scope of Bioinformatics and its most important aspects
CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
CE3 ? To analyze, design, develop, implement, verify and document efficient software solutions based on an adequate knowledge of the
theories, models and techniques in the field of Bioinformatics
CE8 - Understanding the basis of the information of the hereditary material, its transmission, analysis and evolution
CE9 ? To understand the benefits and the problems associated with the sequencing and the use of biological sequences, as well as
knowing the structures and techniques for their processing
CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas,
often in a context of research
CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
broad (or multidisciplinary) contexts related to their field of study
CG3 - Be able to work in a team, especially of interdisciplinary nature
CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to.
CT7 ? To maintain and establish strategies for scientific updating as a criterion for professional improvement.

Learning outcomes			
Learning outcomes		Study programme	
	competences /		
		results	
To know the data structures and the algorithms used for compactly storing and processing of biological sequences.	AJ1		
	AJ2		
	AJ9		
To analyze and compare the data structures and the complexity of the algorithms used.		BJ1	CJ6
	AJ3		CJ7
To understand, analyze, design and implement solutions for different fundamental problems of sequence alignment, read error	AJ1	BJ1	CJ6
correction, contig assembly, gap filling, etc.	AJ2	BJ2	CJ7
	AJ3	BJ8	
	AJ8		
	AJ9		

To explain, analyze, design and implement solutions to the problems related with evolution, such as haplotype assembly, motif	AJ1	BJ1	CJ6	
finding, permutation patterns, genomic rearrangement, etc.	AJ2	BJ2	CJ7	
	AJ3	BJ8		
	AJ8			
	AJ9			

Contents		
Topic	Sub-topic	
Introduction to algorithms complexity analysis	Algorithms analysis	
	Complexity	
Sequence pattern search	Exact string matching methods	
	Approximate string matching methods	
	Suffix trees and suffix arrays	
Introduction to sequence compression and indexing	Compression techniques	
	Indexes and self-indexes	
Applications to biological sequences	Sequence comparison	
	Motif finding	
	Genomic rearrangements	
	Sequence alignment	
	Sequence assembly	
	Phylogenetic analysis	

Plannin	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
A2 A3 B1 B2 B8 C7	14	70	84
C6			
A1 A2 A3 A8 A9 B2	3	0	3
A1 A2 A3 A8 A9	28	32	60
	3	0	3
	Competencies / Results A2 A3 B1 B2 B8 C7 C6 A1 A2 A3 A8 A9 B2	Results (in-person & virtual) A2 A3 B1 B2 B8 C7 C6 A1 A2 A3 A8 A9 B2 A1 A2 A3 A8 A9 28	Competencies / Results (in-person & virtual) Student?s personal work hours

	Methodologies		
Methodologies	Description		
ICT practicals	Students will complete practical exercises to develop all the knowledge acquired during lectures.		
Mixed	It consists of a written test to show that the student has acquired the knowledge and skills during lectures and practice		
objective/subjective	sessions.		
test			
Guest lecture /	Lectures where the course contents are exposed. Active participation will be monitored on a continuous and objective basis.		
keynote speech			

	Personalized attention		
Methodologies	Description		
Guest lecture /	There may exist differences among the students regarding their background on algorithms and data structures. Thus, teachers		
keynote speech ICT practicals			

Assessment

Methodologies	Competencies /	Description	Qualification
	Results		
Mixed	A1 A2 A3 A8 A9 B2	It will consist of a written test where the students must prove the knowledge and	40
objective/subjective		competences acquired during lectures and practice sessions.	
test			
		To pass the course globally it is necessary to obtain in the mixed test a minimum	
		grade of 1.5 (over 4). If that minimum grade is not achieved, the maximum grade	
		cannot exceed 4.9 (and therefore the course is failed)	
Guest lecture /	A1 A2 A3 A8 A9	There will be a continuous and objectifiable follow-up of the active participation during	10
keynote speech		the master classes, by means of exercises delivered during these classes. This part of	
		the evaluation will not be able to be recovered in the second opportunity.	
ICT practicals	A2 A3 B1 B2 B8 C7	The work done by the students during practice sessions will be assessed. Students	50
	C6	must submit and defend their work in front of the teaching staff. Submissions out of	
		time may result in a grade penalty.	

Assessment comments

FIRST OPPORTUNITY:

Students that do not take the written exam will obtain a grade of "Non presentado" (Absent).

SECOND OPPORTUNITY:

Only those students that have not passed the course in the first opportunity can be evaluated in the second opportunity. Students can recover any of the parts as follows:

ICT practicals (50%): the students can repeat the ICT practicals under the same circumpstances than in the first opportunity (those submitted out of time can obtain a maximum of 80% of the grade). Thus, in case of repeating all the assignments, the maximum grade will be 4 points. Written test (40%): in the same conditions as in the first opportunity. The grade obtained from the continuous and objective monitoring of the active participation during the lectures cannot be recovered. In case of not retaking one of the parts, the grade obtained in the first opportunity for that part will be kept. To pass the course globally it is necessary to obtain in the mixed test a minimum grade of 1.5 (over 4). Students that do not retake any part will obtain a grade of "Non presentado" (Absent). ADVANCED OPPORTUNITY:

The assessment for the advanced opportunity will be: 50% ICT practicals, 50% written text.ACADEMIC DISPENSATION:

Students officially enrolled part-time who have been granted an official dispensation from attending classes, as stipulated in the regulations of this University, must contact with the responsible of the course within the first two weeks to establish the conditions for submitting and defending the practical exercises and the supervised project.

ACADEMIC FRAUD:

The fraudulent performance of tests or evaluation activities, once verified, will directly imply the qualification of failure in the call in which it is committed: the student will be graded with "suspenso" (numerical grade 0) in the corresponding call of the academic year, whether the commission of the fault occurs in the first opportunity or in the second. For this, the student's grade will be modified in the first opportunity report, if necessary.

Sources of information		
Basic	- Dan Gusfield (1997). Algorithms on Strings, Trees and Sequences. Cambridge University Press	
	- Neil C. Jones, Pavel A. Pevzner (2004). An Introduction to Bioinformatics Algorithms. MIT Press	
	- Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, Alexandru I. Tomescu (2015). Genome-Scale Algorithm Design.	
	Cambridge University Press	
Complementary	- Enno Ohlebusch (2013). Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic	
	Reconstruction. Oldenbusch Verlag	
	- G. Navarro y M Raffinot (2002). Flexible Pattern Matching in Strings. Cambridge University Press	
	- A. Moffat y A. Turpin (2002). Compression and Coding Algorithms. Kluwer Academic Publishers	
	- T. C. Bell, J. G. Clearly y I. H. Witten (1990). Text Compression. Prentice Hall	

Recommendations

Subjects that it is recommended to have taken before

Introduction to molecular biology/614522004

Genetics and molecular evolution/614522005

Genomics/614522006

Fundamentals of bioinformatics/614522008

Introduction to programming/614522001

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Advanced processing of biological sequences/614522020

New trends and applications in bioinformatics and biomedical engineering/614522021

Other comments

Gender perspective: According to the different regulations applicable to university teaching, the gender perspective must be incorporated in this subject (use of non-sexist language, etc.). Work will be done to identify and modify sexist prejudices and attitudes and influence the environment to modify them and promote values of respect and equality. The aim will be to detect situations of gender discrimination and to propose actions and measures to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.