

Teaching Guide						
	Identifying Data 2023/24				2023/24	
Subject (*)	Reasoning and Planning				Code	614544003
Study programme	Máster Universitario en Intelixen	cia Artificial				
		Descr	iptors			
Cycle	Period	Ye	ar		Туре	Credits
Official Master's Degree	1st four-month period First Obligatory 6			6		
Language	English					
Teaching method	Face-to-face					
Prerequisites						
Department	Ciencias da Computación e Teci	noloxías da Info	rmación			
Coordinador	Cabalar Fernandez, Jose Pedro E-mail pedro.cabalar@udc.es			.es		
Lecturers	Cabalar Fernandez, Jose Pedro E-mail			pedro.cabalar@udc.es		
	Moret Bonillo, Vicente			vicente.moret@udc	.es	
Web					·	
General description						

	Study programme competences
Code	Study programme competences
A6	CE05 - Ability to design and develop intelligent systems through the application of inference algorithms, knowledge representation and
	automated planning
A7	CE06 - Ability to recognise those problems that require a distributed architecture, not predetermined during the system design, suitable for
	the implementation of multiagent systems
A8	CE07 - Ability to understand the consequences of the development of an explainable and interpretable intelligent system
A9	CE08 - Ability to design and develop secure intelligent systems, in terms of integrity, confidentiality and robustness
B1	CG01 - Maintaining and extending theoretical foundations to allow the introduction and exploitation of new and advanced technologies in
	the field of AI
B2	CG02 - Successfully addressing each and every stage of an AI project
B3	CG03 - Searching and selecting that useful information required to solve complex problems, with a confident handling of bibliographical
	sources in the field
B6	CB01 - Acquiring and understanding knowledge that provides a basis or opportunity to be original in the development and/or application of
	ideas, frequently in a research context
B7	CB02 - The students will be able to apply the acquired knowledge and to use their capacity of solving problems in new or poorly explored
	environments inside wider (or multidisciplinary) contexts related to their field of study
B8	CB03 - The students will be able to integrate different pieces of knowledge, to face the complexity of formulating opinions (from
	information that may be incomplete or limited) and to include considerations about social and ethical responsibilities linked to the
	application of their knowledge and opinions
B9	CB04 - The students will be able to communicate their conclusions, their premises and their ultimate justifications, both to specialised and
	non-specialised audiences, using a clear style language, free from ambiguities
C2	CT02 - Command in understanding and expression, both in oral and written forms, of a foreign language
C3	CT03 - Use of the basic tools of Information and Communications Technology (ICT) required for the student's professional practice and
	learning along her life
C4	CT04 - Acquiring a personal development for practicing a citizenship under observation of the democratic culture, the human rights and
	the gender perspective
C5	CT05 - Understanding the importance of the entrepreneurial culture and knowledge of the resources within the entrepreneur person's
	means
C6	CT06 - Acquiring abilities for life and healthy customs, routines and life styles
C7	CT07 - Developing the ability to work in interdisciplinary or cross-disciplinary teams to provide proposal that contribute to a sustainable
	environmental, economic, political and social development

CT08 - Appreciating the importance of research, innovation and technological development in the socioeconomic and cultural progress of

C8

society			
Learning outcomes			
Learning outcomes	Study	y progra	amme
	competences		
Conocer los conceptos fundamentales de la lógica de predicados	AC5	BC1	CC2
	AC6	BC3	CC3
	AC7	BC6	CC4
	AC8	BC7	CC7
		BC8	CC8
		BC9	
Knowing and undertanding the concepts of imprecision and uncertainty versus certainty	AC5	BC1	CC2
	AC6	BC3	CC3
	AC7	BC6	CC5
	AC8	BC7	CC8
		BC8	
		BC9	
Knowing the main imprecise reasoning models and how to apply them to problem solving in AI	AC5	BC1	CC2
	AC6	BC2	CC3
	AC7	BC3	CC4
	AC8	BC6	CC5
		BC7	CC6
		BC8	CC7
		BC9	CC8
Knowing how to model and solve basic planning problems	AC5	BC1	CC2
	AC6	BC2	CC3
	AC7	BC3	CC4
	AC8	BC6	CC5
		BC7	CC7
		BC8	CC8
		BC9	

Contents		
Торіс	Sub-topic	
Unit 1. Introduction	- knowledge representation (KR), reasoning about actions	
	- example-based methodology, declarative problem solving	
	- KR goals, elaboration tolerance, STRIPS language	
	- frame problem and inertia, non-monotonic reasoning, KR topics	
Unit 2. Propositional Reasoning.	- propositional logic, syntax and semantics, set of models	
	- entailment, inconsistence, tautology, deduction theorem, weaker/stronger formulas	
	- deduction/abduction/induction, from language to formulas, the SAT problem	
	- computational complexity, NP-completeness	
	- SAT solvers, Conjunctive Normal Form (CNF)	

Unit 3. Rule-based Reasoning	- Closed World Assumption (CWA), positive programs, least model, TP immediate
	consequences
	- default negation, program reduct, stable models
	- examples getting stable models, stratified programs
	- choice rules, constraints, splitting
	- Here-and-There (HT)
	- Equilibrium models, strong equivalence
Unit 4. Relational Reasoning	- grounding, deductive databases, Datalog, domain independence, safety
	- Hamiltonian cycles, Answer Set Programming (ASP), GDT methodology
	- Pooling, terms, reification, aggregates
	- Optimisation
	- ASP applications and solvers
Unit 5. Temporal Reasoning and Planning	- telingo, switches example, simulation, postdiction, planning
	- missionaries and cannibals, the blocks world
	- abduction, explanation, diagnosis
	- temporal equilibrium logic
	- survey on AI planning
	Description Logics
Unit 6. Terminological Reasoning	
Unit 7. Reasoning with inaccurate information	- Categorical models
	- Probabilistic models
	- Cuasi-probabilistic models
	- Certainty factors
	- Theory of Evidence
	- Fuzzy Logic
	- Vectorial Approaches
	- Quantum Models

	Planning	J		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A6 A7 A8 A9 B2 B3	21	42	63
	B6 B8 B9 C2 C6			
Objective test	A6 A7 A8 A9 B3 B6	3	21	24
	B7 B8 B9 C2			
Laboratory practice	A6 A7 A8 A9 B1 B2	21	42	63
	B3 B7 B8 C3 C4 C5			
	C6 C7 C8			
Personalized attention		0		0
(*)The information in the planning table is for	r quidance only and does not t	take into account the	beterogeneity of the stur	lonts

Methodologies		
Methodologies	Description	
Guest lecture /	Classes of concepts and foundations with small exercises	
keynote speech		
Objective test	Individual exam	
Laboratory practice	Practical work, normally in groups, with tools of reasoning and planning	

	Personalized attention
Methodologies	Description

Assessment			
Methodologies	Competencies	Description	Qualification
Laboratory practice	A6 A7 A8 A9 B1 B2	Submission of one or several practical assignments	49.5
	B3 B7 B8 C3 C4 C5		
	C6 C7 C8		
Guest lecture /	A6 A7 A8 A9 B2 B3	Depending on how the course evolves, a part of the exam could be consolidated by	0.5
keynote speech	B6 B8 B9 C2 C6	submitting solved exercises along the lecture classes period	
Objective test	A6 A7 A8 A9 B3 B6	An individual exam consisting of several exercises that will be assessed up to a	50
	B7 B8 B9 C2	maximum of 50 points.	
		Requirement a minimum grade of 20 points in the exam must be achieved to pass the course.	
		If that minimum grade inside the exam is not achieved, the final total grade for the course will be truncated to 4.8 (that is 48%) if the addition of all qualifications are above that number.	

Assessment comments

Sources of information			
Basic			
Complementary	- Michael Gelfond and Yulia Kahl (2014). Knowledge Representation, Reasoning, and the Design of Intelligent Agents:		
	The Answer-Set Programming Approach. Cambridge University Press		
	- Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub (2012). Answer Set Solving in Practice.		
	Morgan and Claypool Publishers		
	- Vladimir Lifschitz (2019). Answer Set Programming. Springer		
	- Chitta Baral (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University		
	Press		
	- Stuart Russell and Peter Norvig (2021). Artificial Intelligence: a Modern Approach (4th ed). Pearson, Prentice Hall		

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
AI Fundamentals/614544001
Subjects that continue the syllabus

Al in Health /614544022 Computational Aspects of Cognitive Science/614544006 Intelligent Robotics II/614544020 Language Modelling/614544009 Explainable and Trustworthy Al/614544004 Multiagent Systems/614544005 Web Intelligence and Semantic Technologies/614544010 Knowledge and Reasoning under Uncertainty/614544007 Process Mining/614544025 Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.