		Teachin	g Guide		
Identifying Data					2023/24
Subject (*)	Error Correction Codes		Code	614551013	
Study programme	Máster Universitario en Ciencia e Tecnoloxías de Información Cuán			tica	<u>'</u>
		Desci	riptors		
Cycle	Period	Ye	ear	Туре	Credits
Official Master's Degre	e 2nd four-month period	Fi	rst	Optional	3
Language	Spanish		,		·
Teaching method	Face-to-face				
Prerequisites					
Department	Enxeñaría de Computadores				
Coordinador			E-mail		
Lecturers	Castedo Ribas, Luis E-mail luis.castedo@udc.es			dc.es	
Web	n9.cl/bosw5				
General description	SHARED UVIGO AND UDC				
	VISIT WEB LINK				
	This course provides an introduction to quantum error correction, which is a fundamental aspect of quantum computation				
	and quantum information theory. The course aims to explore various error correction codes and techniques that allow				
	preserving and manipulating quantum information in the presence of noise and errors.				

	Study programme competences			
Code	Study programme competences			
A13	CON_13 Have knowledge of the physical and technical limitations of implementing quantum information processing systems: noise,			
	decoherence, etc., as well as the mitigation or correction strategies that are proposed.			
B13	HD24 Actively participate in face-to-face activities in the classroom.			
C1	C1. Adequate oral and written expression in the official languages.			
C2	C2. Mastering oral and written expression in a foreign language.			
C3	C3. Using ICT in working contexts and lifelong learning.			

Learning outcomes					
Learning outcomes			amme		
			ces		
Ability to understand the construction, analysis and applications of quantum error control codes in communication systems and			CJ1		
quantum computers.			CJ2		
Error control codes in communication systems and quantum computers. Knowledge of the main specific specific codes.			CJ3		

Contents			
Topic Sub-topic			
Quantum errors	- Overview of quantum errors and their sources		
	- Decoherence and noise in open quantum systems		
	- Types of errors and error channel models		
	- Digitization of quantum noise. Error operators		
Fundamentals of quantum error correction	- From Classical to Quantum Error Correction		
error correction	- The three-qubit error correction code		
	- The nine-qubit Shor code		
	- Conditions of quantum error correction		
	- The quantum Hamming limit		

Construction of quantum codes	- Classical linear block codes	
	- Calderbank-Shor-Steane Codes (CSS)	
Stabilizer codes	- The stabilizer formalism	
	- Measurement in the stabilizer formalism	
	- Constructions of stabilizer codes	
	- Quantum circuits for coding, decoding and correction	
Topological stabilizing codes	- The Z2 chain complex	
	- Surface codes on a torus: toric codes	
	- Flat surface codes	
	- Topological quantum error correction	
Fault-tolerant quantum computing	- Fault tolerance in quantum computing	
	- Fault-tolerant error correction	
	- Fault-tolerant coded operations	

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class hours	Student?s personal work hours	Total hours
Problem solving	B13	5	27	32
Oral presentation	C1 C2 C3	2	0	2
Guest lecture / keynote speech	A13	18	23	41
Personalized attention		0	0	0
(*)The information in the planning table is for	quidance only and does not	take into account the	heterogeneity of the stud	dents.

Methodologies			
Methodologies	Description		
Problem solving	Typical quantum error code design and analysis problems will be solved, in order to learn how to use the methods seen in the		
	lectures.		
Oral presentation	An oral presentation of evaluation work will be made		
Guest lecture /	The main elements of quantum error codes, their applications and limitations will be presented.		
keynote speech	limitations.		

Personalized attention				
Methodologies	Methodologies Description			
Guest lecture /	Consultations will be handled asynchronously via Microsoft Teams chat. Support will be provided through face-to-face			
keynote speech meetings or online meetings via Microsoft Teams.				
Problem solving				
Oral presentation				

Assessment			
Methodologies	Competencies	Description	Qualification
Problem solving	B13	Resolution of exercises in an autonomous and individual way, delivery in writing. Two	60
		sets with a value of 30% each.	
Oral presentation	C1 C2 C3	Submission of a roll-up work by the student	40

Assessment comments	
Assessment comments	

Sources of information

Basic	- M. A. Nielsen, I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press - Ivan B. Djordevic (2021). Quantum Information Processing, Quantum Computing. and Quantum Error Correction. Academic Press
Complementary	- Giuliano Gadioli La Guardia (2020). Quantum Error Correction. Springer
	- Frank Gaitan (2013). Quantum Error Correction and Fault Tolerant Quantum Computing. Taylor & Error Correction and Fault Tolerant Quantum Computing. Taylor & Error Correction and Fault Tolerant Quantum Computing.
	- D. A. Lidar, T. A. Brun (2013). Quantum Error Correction. Cambridge University Press

Recommendations	
Subjects that it is recommended to have taken before	
Fundamentals of Quantum Information/614551003	
Fundamentals of Quantum Communications/614551005	
Introduction to Quantum Computing/614551004	
Subjects that are recommended to be taken simultaneously	
Subjects that continue the syllabus	
Other comments	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.