

		Teaching Guide				
	Identifying D	Data		2023/24		
Subject (*)	Numerical Methods in Quantum Corr	puting	Code	614551025		
Study programme	Máster Universitario en Ciencia e Te	cnoloxías de Información	Cuántica			
		Descriptors				
Cycle	Period	Year	Туре	Credits		
Official Master's Degre	e 2nd four-month period	First	Optional	3		
Language	Spanish					
Teaching method	Face-to-face					
Prerequisites						
Department	Matemáticas					
Coordinador	Vazquez Cendon, Carlos	E-ma	il carlos.vazquez.o	cendon@udc.es		
Lecturers	Vazquez Cendon, Carlos	E-ma	il carlos.vazquez.o	carlos.vazquez.cendon@udc.es		
Web	n9.cl/ikre8					
General description	The application of Quantum Computing to numerical simulation problems of processes and products is very promising,					
	although the advancement of quantum computer technology is currently required to address the complexity of the problems					
that arise in real applications in different disciplines On the other hand, the benefits of Quantum Compute		antum Computing often require				
a redesign of the classical numerical methods, or the construction of new methods, so that they are efficient. In the			at they are efficient. In this subject			
	there will be an introduction to quantum algorithms related to different problems that numerical methods solve, such as					
	those related to functions of one variable, approximations in matrix numerical calculus, numerical optimization and					
	simulation. In addition to explaining the problems addressed by numerical methods and some algorithms that are used in					
	Quantum Computing to solve them, the practical implementation of these algorithms will be carried out.					

	Study programme competences / results
Code	Study programme competences / results
A4	CON_04 Have knowledge of quantum computing, algorithms, circuits, their programming in different languages and accessible platforms
A14	CON_14 Be aware of problem sets where quantum computing at its current stage of development can offer an advantage over classical computing: chemistry, biology, optimization, logistics, finance, etc.
B1	HD01 Analyze and break down a complex concept, examine each part and see how they fit together
B3	HD03 Compare and contrast and point out similarities and differences between two or more topics or concepts
B6	HD11 Prepare accurately the relevant questions for a specific problem.
B8	HD13 Improvise solutions in an innovative way to solve a problem.
B12	HD23 Communicate using the expected norms for the chosen medium.
B13	HD24 Actively participate in face-to-face activities in the classroom.
B14	HD31 Assign resources and responsibilities so that all members of a team can work optimally
B16	HD33 Set goals for the group to analyze the situation, decide what outcome is desired and clearly set an achievable goal.
C1	C1. Adequate oral and written expression in the official languages.
C2	C2. Mastering oral and written expression in a foreign language.
C3	C3. Using ICT in working contexts and lifelong learning.
C4	C4. Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C7	C7. Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a sustainable environmental, economic, political and social development.
C8	C8. Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of societ

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

			<u> </u>
Know the state of the art of the use of quantum computing to develop numerical methods	AJ4	BJ1	CJ1
	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	
Know the quantum algorithms related to functions of a variable, matrix numerical calculation, numerical methods of	AJ4	BJ1	CJ1
optimization and numerical and stochastic simulation	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	
Know how to implement numerical methods in quantum computer simulators	AJ4	BJ1	CJ1
	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	

	Contents
Торіс	Sub-topic
1. Introduction to Numerical Methods in Quantum Computing	
2. Quantum numerical methods on functions of one variable	
3. Quantum algorithms for matrix numerical computation	
4. Quantum algorithms of numerical optimization methods	
5. Quantum algorithms for numerical and stochastic simulation	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A4 A14 B1 B3 B6 B8	11	0	11
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
CT practicals	A4 A14 B1 B3 B6 B8	4	10	14
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
Case study	A4 A14 B1 B3 B6 B8	2	8	10
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
Problem solving	A4 A14 B1 B3 B6 B8	4	10	14
	B12 B14 B16 C1 C2			
	C3 C4 C7 C8			

Supervised projects	A4 A14 B1 B3 B6 B8	0	20	20
	B12 B14 B16 C1 C2			
	C3 C4 C7 C8			
Personalized attention		6	0	6
(*)The information in the planning tel	le is fer quidence only and does not tak	into opposint the	hotorogonoity of the of	

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies		
Methodologies	Description		
Guest lecture /	Presentation in the classroom of the contents of the subject		
keynote speech			
ICT practicals	Programming and use of simulators to solve examples		
Case study	Presentation of use cases that propose quantum algorithms for different numerical methods		
Problem solving	The student is given problems to solve individually or in a group		
Supervised projects	Students are given assignments to prepare individually or in groups, which are monitored with personalized attention when		
	necessary		

Personalized attention		
Methodologies	Description	
Supervised projects	Supervised projects Supervised work is monitored, giving guidance and recommendations for its development	

		Assessment	
Methodologies	Competencies /	Description	
	Results		
Problem solving	A4 A14 B1 B3 B6 B8	Problems of greater or lesser complexity are posed to be carried out individually or in	50
	B12 B14 B16 C1 C2	groups, which may involve handling simulators. The student will deliver a document	
	C3 C4 C7 C8	with his resolution	
Supervised projects	A4 A14 B1 B3 B6 B8	Supervised work is proposed to be carried out individually or in a group, depending on	50
	B12 B14 B16 C1 C2	the complexity. The student must deliver a brief report on the work done and make a	
	C3 C4 C7 C8	brief oral presentation about it, answering the teacher's questions	

Assessment comments

	Sources of information
Basic	- García-Ripoll, J.J. (2021). Quantum-inspired algorithms for multivariate analysis: from interpolation to partial
	differential equations. Quantum 5, 431
	- Gómez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordoñez, G., Vázquez, C. (2022). A survey on
	quantum computational finance for derivatives pricing and VaR. Archives of Computational Methods in Engineering,
	29, 4137?4163.
	- Hadfield, S.A. (2018). Quantum algorithms for scientific computing and approximmate optimization. PhD Thesis,
	Columbia University
Complementary	

Recommendations

Subjects that it is recommended to have taken before

Quantum Computing Tools/6	614551006
Quantum Computing Archite	ctures/614551022
Programming and Implement	tation of Quantum Algorithms/614551007
Quantum Computing and Hi	gh Performance Computing/614551009
Introduction to Quantum Cor	nputing/614551004
	Subjects that are recommended to be taken simultaneously
Quantum Computing and Ma	achine Learning/614551008
Rule-Based Quantum Syste	ms/614551029
	Subjects that continue the syllabus
Master's Dissertation/61455	1033
Practical Applications of Qua	antum Computing/614551010
	Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.