		Teachin	g Guide			
Identifying Data					2023/24	
Subject (*)	Numerical Methods in Quantum Computing Code			614551025		
Study programme	Máster Universitario en Ciencia e Tecnoloxías de Información Cuántica					
		Desc	riptors			
Cycle	Period	Ye	ear		Туре	Credits
Official Master's Degre	e 2nd four-month period	Fi	rst		Optional	3
Language	Spanish		·			·
Teaching method	Face-to-face					
Prerequisites						
Department	Matemáticas					
Coordinador	Vazquez Cendon, Carlos E-mail carlos.vazquez.cendon@udc.es					
Lecturers	Vazquez Cendon, Carlos E-mail carlos.vazquez.cendon@udc.es			cendon@udc.es		
Web	n9.cl/ikre8					
General description	The application of Quantum Computing to numerical simulation problems of processes and products is very promising,					
	although the advancement of quantum computer technology is currently required to address the complexity of the problems					
	that arise in real applications in different disciplines On the other hand, the benefits of Quantum Computing often require					
	a redesign of the classical numerical methods, or the construction of new methods, so that they are efficient. In this subject					
	there will be an introduction to quantum algorithms related to different problems that numerical methods solve, such as					
	those related to functions of one variable, approximations in matrix numerical calculus, numerical optimization and					
	simulation. In addition to explaining the problems addressed by numerical methods and some algorithms that are used in			ome algorithms that are used in		
	Quantum Computing to solve then	n, the practica	I implementation	of these	algorithms will b	pe carried out.

	Study programme competences
Code	Study programme competences
A4	CON_04 Have knowledge of quantum computing, algorithms, circuits, their programming in different languages and accessible platforms
A14	CON_14 Be aware of problem sets where quantum computing at its current stage of development can offer an advantage over classical
	computing: chemistry, biology, optimization, logistics, finance, etc.
B1	HD01 Analyze and break down a complex concept, examine each part and see how they fit together
В3	HD03 Compare and contrast and point out similarities and differences between two or more topics or concepts
B6	HD11 Prepare accurately the relevant questions for a specific problem.
B8	HD13 Improvise solutions in an innovative way to solve a problem.
B12	HD23 Communicate using the expected norms for the chosen medium.
B13	HD24 Actively participate in face-to-face activities in the classroom.
B14	HD31 Assign resources and responsibilities so that all members of a team can work optimally
B16	HD33 Set goals for the group to analyze the situation, decide what outcome is desired and clearly set an achievable goal.
C1	C1. Adequate oral and written expression in the official languages.
C2	C2. Mastering oral and written expression in a foreign language.
C3	C3. Using ICT in working contexts and lifelong learning.
C4	C4. Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C7	C7. Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a
	sustainable environmental, economic, political and social development.
C8	C8. Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of socie

Learning outcomes	
Learning outcomes	Study programme
	competences

Know the state of the art of the use of quantum computing to develop numerical methods	AJ4	BJ1	CJ1
	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	
Know the quantum algorithms related to functions of a variable, matrix numerical calculation, numerical methods of	AJ4	BJ1	CJ1
optimization and numerical and stochastic simulation	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	
Know how to implement numerical methods in quantum computer simulators	AJ4	BJ1	CJ1
	AJ14	BJ3	CJ2
		BJ6	CJ3
		BJ8	CJ4
		BJ12	CJ7
		BJ13	CJ8
		BJ14	
		BJ16	

	Contents
Topic	Sub-topic
Introduction to Numerical Methods in Quantum Computing	
2. Quantum numerical methods on functions of one variable	
3. Quantum algorithms for matrix numerical computation	
4. Quantum algorithms of numerical optimization methods	
5. Quantum algorithms for numerical and stochastic simulation	

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A4 A14 B1 B3 B6 B8	11	0	11
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
CT practicals	A4 A14 B1 B3 B6 B8	4	10	14
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
Case study	A4 A14 B1 B3 B6 B8	2	8	10
	B12 B13 B14 B16 C1			
	C2 C3 C4 C7 C8			
Problem solving	A4 A14 B1 B3 B6 B8	4	10	14
	B12 B14 B16 C1 C2			
	C3 C4 C7 C8			

Supervised projects	A4 A14 B1 B3 B6 B8	0	20	20
	B12 B14 B16 C1 C2			
	C3 C4 C7 C8			
Personalized attention		6	0	6
Personalized attention		6	0	6

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Presentation in the classroom of the contents of the subject
keynote speech	
ICT practicals	Programming and use of simulators to solve examples
Case study	Presentation of use cases that propose quantum algorithms for different numerical methods
Problem solving	The student is given problems to solve individually or in a group
Supervised projects	Students are given assignments to prepare individually or in groups, which are monitored with personalized attention when
	necessary

Personalized attention			
Methodologies	Methodologies Description		
Supervised projects Supervised work is monitored, giving guidance and recommendations for its development			

Assessment				
Methodologies	Competencies	Description	Qualification	
Problem solving	A4 A14 B1 B3 B6 B8	roblems of greater or lesser complexity are posed to be carried out individually or in		
	B12 B14 B16 C1 C2	groups, which may involve handling simulators. The student will deliver a document		
	C3 C4 C7 C8	with his resolution		
Supervised projects	A4 A14 B1 B3 B6 B8	Supervised work is proposed to be carried out individually or in a group, depending on	50	
	B12 B14 B16 C1 C2	the complexity. The student must deliver a brief report on the work done and make a		
	C3 C4 C7 C8	brief oral presentation about it, answering the teacher's questions		

Assessment comments	

	Sources of information
Basic	- García-Ripoll, J.J. (2021). Quantum-inspired algorithms for multivariate analysis: from interpolation to partial
	differential equations. Quantum 5, 431
	- Gómez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordoñez, G., Vázquez, C. (2022). A survey on
	quantum computational finance for derivatives pricing and VaR. Archives of Computational Methods in Engineering,
	29, 4137?4163.
	- Hadfield, S.A. (2018). Quantum algorithms for scientific computing and approximmate optimization. PhD Thesis,
	Columbia University
Complementary	

Recommendations

Subjects that it is recommended to have taken before

Quantum Computing Tools/614551006

Quantum Computing Architectures/614551022

Programming and Implementation of Quantum Algorithms/614551007

Quantum Computing and High Performance Computing/614551009

Introduction to Quantum Computing/614551004

Subjects that are recommended to be taken simultaneously
Quantum Computing and Machine Learning/614551008
Rule-Based Quantum Systems/614551029
Subjects that continue the syllabus
Master`s Dissertation/614551033
Practical Applications of Quantum Computing/614551010
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.