		Teaching G	Guide		
	Identifying Data 2023/24				
Subject (*)	Data Analytics with HPC			Code	614973108
Study programme	Mestrado Universitario en Compu	ıtación de Altas Pr	estacións / Higl	h Performance Computi	ng (Mod. Virtual)
		Descripto	ors		
Cycle	Period	Year		Туре	Credits
Official Master's Degre	e 2nd four-month period	First		Optional	6
Language	English				
Teaching method	Non-attendance				
Prerequisites					
Department	Departamento profesorado máste	erEnxeñaría de Co	mputadores		
Coordinador	López Taboada, Guillermo		E-mail	guillermo.lopez.ta	boada@udc.es
Lecturers	López Taboada, Guillermo E-mail guillermo.lopez.taboada@udc.es			boada@udc.es	
	Rodríguez Álvarez, Gabriel		gabriel.rodriguez@udc.es		
Web	aula.cesga.es				
General description	The increasing amount of informa	ation available thro	ugh the Interne	et calls for the efficient pr	ocessing of large amounts of
	data. This has led to the development of new storage and processing techniques to deal with huge amounts of data,			ith huge amounts of data,	
	namely Big Data techniques, that naturally adapt to distributed systems.				
	The main goal of this subject is to	learn suitable pro	cessing technic	ques for large amounts o	of information in the Big Data
	world, particularly using the Hado	oop ecosystem, and	d compare thes	se techniques with the tra	aditional ones employed in HPC
	environments. This will allow the	student to select th	ne optimal tools	to solve a particular pro	blem.

	Cturbu manusana anno tana a lucanta
	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
В6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B8	CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and
	advanced technologies in the field
B10	CG5 - Be able to work in teams, specially multidisciplinary, and do a proper time and people management and decision taking
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning
C4	CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural advance of the
	society

Learning outcomes			
Learning outcomes	Study	y progra	amme
	con	npetenc	es/
		results	
The student will be capable of installing, configuring, and managing the basic software for massive data processing.	AJ1	BJ2	CJ1
	AJ2	BJ6	
		BJ8	
		BJ10	

The student will be capable of coding massive data processing applications using domain-specific languages.	AJ2	BJ1	CJ1
		BJ2	
		BJ10	
The student will learn about Data Engineering tools (for Intake/Storage/Processing/Visualization).	AJ1	BJ1	CJ1
	AJ2	BJ2	CJ4
The student will learn the skills to search, select and manage Big data-related resources (bibliography, software, etc.).	AJ1	BJ1	CJ1
	AJ2	BJ6	CJ4

	Contents
Topic	Sub-topic
Introduction to Data Engineering	1.1 HPC vs Big Data: similarities and differences in data management.
	1.2 Hardware and Software Technologies for High Performance Data Engineering
	1.3 Data Engineering in HPC infrastructures vs. Cloud environments
2. Introduction to Data Analytics	2.1 Exploratory Data Analytics
	2.2 Introduction to Machine Learning
3. Data Engineering phases	3.1 Modeling (Formats, Compression, Designing Schemas)
	3.2 Intake (Periodicity, Transformations, Tools)
	3.3 Storage (HDFS and NoSQL DBs, HBase, MongoDB, Cassandra)
	3.4 Processing (Batch, Real-Time)
	3.5 Orchestration
	3.6 Analysis (SQL, Machine Learning, Graphs, UI)
	3.7 Governance
	3.8 Integration with BI (Visualization)
4 Use cases	4.1 Applications to Internet of Things (Smart environments and Industry 4.0)
	4.2 Applications to sciences and engineering

Teaching hours n-person & virtual) 0 0	Student?s personal work hours 18	Total hours
n-person & virtual) 0 0	18	
0	-	
0	80	80
	00	00
0	45	45
4	2	6
1	0	1
-	1	· <u>-</u>

	Methodologies
Methodologies	Description
Workbook	Planned instruction through various teaching materials.
Laboratory practice	Problem solving and practical cases.
Supervised projects	Semi-autonomous work on larger practical cases, under the professors' guidance.
Directed discussion	Guidance to solve individual / group assignments, problem solving and continuous evaluation activities.

	Personalized attention
Methodologies	Description
Laboratory practice	During laboratory practice, supervised projects, and directed discussions, students will be able to ask questions, doubts, etc.
Supervised projects	The teacher, after listening to the students feedback, will go over difficult concepts, solve new problems, or use any
Directed discussion	appropriate methodology to answer the questions.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	B1 B8 B10	Grading the assignments submitted by students.	50
Supervised projects	A1 A2 B1 B2 B8	Grading the supervised projects submitted by students.	50

Assessment comments

Not graded: Students that do not present any practical exercise or guided project will not be graded.

Second opportunity (June/July): Resubmit those laboratory practices or supervised projects not previously presented or submitting improved versions of previously presented practices/projects.

In the case of fraudulent performance of practices or projects the regulations of the University will be applied.

Specifically, the fraudulent performance

of tests or assessment activities, once proven, will directly result in the grade of suspension in the call in which it is committed: the student will be graded with "suspension" (numerical grade 0) in the corresponding call for the academic year, whether the commission of the offense occurs in the first opportunity or in the second. For this, your rating will be modified in the first opportunity report, if necessary.

	Sources of information
Basic	- Tom White (2015). Hadoop: The Definitive Guide. O'Reilly (4ª ed.) - Wes McKinney (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly (2ª ed.)
Complementary	- Alex Holmes (2014). Hadoop in practice. Manning (2 ^a ed.)

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus

Other comments

RecommendationsDue to the large practical component of the subject, it is advisable to be up-to-date with practices and guided projects during the

semester. Observations The course makes intensive use of online communication tools: Video calls, chats, etc. In-person classes will be recorded for later perusing. An online learning management will be using for distributing notes, creating forums, etc. The software tools used in this course are generally open-source or have free license for students.Gender Perspective-According to the different application regulations for university teaching, the gender perspective will be incorporated in this subject (non-sexist language will be used, bibliography from authors of both sexes will be used, students will be encouraged to participate in class...)- Work will be done to identify and modify prejudices and sexist attitudes and influence the environment to modify them and promote values of respect and equality.-Situations of discrimination based on gender must be detected and actions and measures will be proposed to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.