		Teaching Guide		
	Identifying D	Pata		2023/24
Subject (*)	Thermal treatments and analysis by laser Code		730495007	
Study programme	Mestrado Universitario en Materiais Complexos: Análise Térmica e Reoloxía (plan 20		a e Reoloxía (plan 2012)	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degre	e 2nd four-month period	First	Optional	2
Language	English			'
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría Naval e Industrial			
Coordinador	Nicolas Costa, Gines	E-mail	gines.nicolas@	udc.es
Lecturers	Lecturers Nicolas Costa, Gines E-mail gines.nicolas@udc.es		udc.es	
Web		'	,	
General description	This course aims to describe the cha	racterization of materials by	laser analysis (especia	lly on plasma emission
	spectroscopy induced by laser) and it	nduced thermal effects.		

	Study programme competences
Code	Study programme competences
A1	Set up and conduct tests using the techniques of thermal analysis and rheology most appropriate in each case, within the scope of
	complex materials
A5	Understanding the relationships between structure and properties of materials
B2	The students have the skill to apply their knowledge and their ability to solve problems in new or unfamiliar contexts within broader (or
	multidisciplinary) contexts related to their field of study
В3	That students are able to integrate knowledge and handle complexity, and formulate judgments from an information that, being limited or
	not complete, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and judgments
B4	That the students can communicate their conclusions and the knowledge and last reasons behind that conclusions to specialized and non
	specialized audience in a clear and unambiguous way
B8	Applying a critical, logical and creative way of thinking
B13	Analysis-oriented attitude
B21	To assess the importance of research, innovation and technological developments in the socio-economic and cultural progress of society
C2	Have a good command of spoken and writing expression and understanding of a foreign language.
C4	Developing for the exercise of an open, educated, critical, committed, democratic and solidary citicenship, able to analyze reality, diagnose
	problems, formulate and implement solutions based on knowledge and oriented to the common good.
C6	Critically assessing the knowledge, technology and information available to solve the problems they face with.
C7	To assume as a professional and citizen the importance of learning throughout life.
C8	To assess the importance of research, innovation and technological development in the socio-economic and cultural progress of society.

Learning outcomes			
Learning outcomes	Study	y progra	ımme
		competences	
Knowledge of the laser concepts and laser-interaction fundamentals	AR1	BR2	CR2
Knowledge of the processes about laser materials treatments		BR3	CR4
Knowledge of the processes about laser materials analyses		BR4	CR6
		BR8	CR7
		BR13	CR8
		BR21	

	Contents
Topic	Sub-topic

The following blocks or topics develop the contents	Laser irradiation of the material and subsequent thermal effects.
established in the Verification Report, which are:	Treatments by laser heating. Laser-based instrumental methods for analysis and
	characterization of materials.
Laser fundamentals	1.1 Basic laser mechanisms
	1.2 Optics and beam manipulation
	1.3 Types of lasers
2. Laser heat treatment	2.1 Interaction phenomena
	2.2 Basic regimes of the heating
	2.3 Types of heat treatments
3. Laser analysis	3.1 Fundamentals of laser spectroscopy
	3.2 Types of laser spectroscopy techniques
	3.3 Laser induced plasma spectroscopy
	3.3 Laser induced plasma spectroscopy

class Student?s personal	Total hours
s work hours	
12	14
12	16
10	18
0	2
	0 ount the heterogeneity of the stu

Methodologies	
Methodologies	Description
Document analysis	Work will be made on a specific technique based on scientific papers
Laboratory practice	Experimental session in the Industrial Applications Laboratory
Guest lecture /	Presentation with slides
keynote speech	

Personalized attention	
Methodologies	Description
Document analysis	Discussion about how focusing the report No academic dispensation accepted.

		Assessment	
Methodologies	Competencies	Description	Qualification
Document analysis	B2 B3 B4 B8 B13 C2	Quality of the scientific report about the proposed theme	100
	C4 C6 C7 C8		

Assessment comments

The evaluation criteria in the 2nd opportunity and in the forward one are the same as those in the 1st opportunity. Students with recognition of part-time dedication DO NOT have an academic exemption of attendance exemption for Laboratory Practices, although they will be given facilities regarding the dates of completion prior communication. The criteria and evaluation activities for this student will be the same as for the rest of the students.

The fraudulent completion of exams or evaluation activities, once confirmed, will directly result in a failing grade in the session in which it occurs: the student will be awarded a 'fail' (numerical grade of 0) in the corresponding academic year session, whether the offense is committed during the first opportunity or the second. To this end, their grade will be modified in the first opportunity transcript, if necessary.

	Sources of information
Basic	- C.D. Davis (1996). Lasers and Electro-Optics. Cambridge
	- A.M. Prokhorov (1990). Laser Heating of Metals. Adam Hilger
	- W. Demtröder (1996). Laser spectroscopy basic concepts and instrumentation. Springer
	- D.A. Cremers (2006). Handbook of Laser-induced Breakdown Spectroscopy. Wiley
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

To help achieve a sustained immediate environment and meet the goal of action number 5: "Healthy and environmental and social teaching and research" of the "Green Campus Ferrol Action Plan", the following recommendations are made: -Make a sustainable use of resources and the prevention of negative impacts on the natural environment -The delivery of the documentary works that are made in this matter: ? It will be done through Moodle, in digital format without the need to print them? If it is necessary to make them on paper: - Plastics will not be used - Double-sided prints will be made. - Recycled paper will be used. - The printing of drafts will be avoided. Another in general, sustainable use of resources will be made and negative impacts on the natural environment will be avoided as far as possible. In addition, the importance of ethical principles related to sustainability values in personal and professional behaviors will be taken into account. As stated in the different regulations applicable to university teaching, the gender perspective will be incorporated in this area (non-sexist language will be used, bibliography of authors of both sexes will be used, the intervention in class of students will be encouraged ...). Work will be done to identify and modify prejudices and sexist attitudes, and the environment will be influenced to modify them and promote values of respect and equality. Anbsp; Situations of discrimination based on gender will be detected and actions and measures will be proposed to correct them. The full integration of students who, for physical, sensory, mental or sociocultural reasons, experience difficulties with suitable, equal and profitable access to university life will be facilitated.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.