		Teaching	g Guide		
	ldentifying l	Data			2023/24
Subject (*)	Autonomous Marine Vehicles			Code	730542017
Study programme	Master Universitario Erasmus Mundus en Sostibilidade e Industria 4.0 aplicada ao Sector Marítimo				
		Descr	iptors		
Cycle	Period	Ye	ar	Туре	Credits
Official Master's Degre	e 2nd four-month period	Fir	st	Optional	6
Language	English				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecnoloxías da InformaciónMatemáticas				
Coordinador	Orjales Saavedra, Félix		E-mail	felix.orjales@udc.es	
Lecturers	Bellas Bouza, Francisco Javier		E-mail	francisco.bellas@	@udc.es
	Guerreiro Santalla, Sara			sara.guerreiro@	udc.es
	Orjales Saavedra, Félix			felix.orjales@ud	c.es
Web	http://www.master-seas40.unina.it	'		'	
General description	The main objective of the course is t	to provide the	e students with an u	pdated vision of autor	nomous marine vehicles, both
	surface and underwater systems. Th	ne topics are	mainly focused on p	providing students wit	th the basics of intelligent control
	systems in marine environments. In addition, it will also provide a technical and regulatory approach to the field of robotics				
	within this scope. In order to obtain these goals, and apart from the theoretical basis, students will work with simulated and				
	real marine vehicles, thus developing	g the skills n	eeded to tackle the	implementation of rea	al autonomous marine robots.

	Study programme competences
Code	Study programme competences
A4	CE4 ? Demonstrate knowledge, understanding and competences in the field of design and operation of robots and marine autonomous
	vehicles (RAS).
B2	CB6 - Acquire and understand knowledge that provides a basis or opportunity to be original in the development and / or application of
	ideas, usually in a research context.
В3	CB7 - That students know how to apply the acquired knowledge and their ability to solve problems in new or unfamiliar environments
	within broader (or multidisciplinary) contexts related to their area of study.
B4	CB8 - That students are able to integrate knowledge and face the complexity of making judgments based on information that, being
	incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and
	judgments.
B5	CB9 ? That students are able to communicate their conclusions -and the knowledge and ultimate reasons that sustain them- to specialized
	and non-specialized publics in a clear and unambiguous way.
B6	CB10 - That students have the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous
B7	CG1 ? To display the adequate intercultural competence to successfully navigating within multicultural learning environments and to
	implement basic management principles suitable for a multicultural working environment.
B8	CG2 ? To express an attitude of intellectual inquisitiveness and open-mindedness.
B9	CG3 ? To have the capability to use knowledge, skills, ideas, theory, and modern engineering concepts to create new or significantly
	improved real engineering applications.
B11	CG5 ? To have the capability to identify, formulate and solve engineering problems within realistic constraints.
B13	CG7 ? To have the capability to critically analyse, synthesise, interpret and summarise complex scientific processes.
C2	CT2 - Mastering oral and written expression in a foreign language.
C3	CT3 - Using ICT in working contexts and lifelong learning.
C4	CT4 - Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C6	CT6 - Acquiring skills for healthy lifestyles, and healthy habits and routines.
C7	CT7 -Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a
	sustainable environmental, economic, political and social development.

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	co	mpeten	ces
Capacity for applying mathematical and ICT methods and tools to define, design, operate and maintain advanced marine		BC1	CC2
robotic systems and for understanding and developing the needed algorithms and methods.		BC2	CC3
		BC3	CC4
		BC4	CC6
		BC5	CC7
		BC6	
		BC7	
		BC10	
		BC12	
Understanding the difference between autonomous and non-autonomous operation in robotics, and how it fits into the Artificial	AC4	ВС3	CC4
Intelligence field		BC5	
		BC7	
		BC12	
Acquiring the knowledge about sensors and actuators relevant in marine vehicles to provide them with autonomous	AC4	BC1	CC4
capabilities		BC3	CC6
		BC5	CC7
		BC7	
		BC12	
Understanding the fundamentals of autonomous robotic control, and how classical techniques are very important to achieve a	AC4	BC1	CC3
proper response. Being able to apply these concepts in navigation tasks		BC2	CC4
		BC3	CC6
		BC5	CC7
		BC7	
		BC12	
Capacity for using a marine vehicle simulator and programming it, including all the previous knowledge about sensors,	AC4	BC2	CC3
actuators and autonomous/classical control. In addition, students must learn how to transfer the simulated control to the real		BC3	CC6
platform		BC5	CC7
		BC6	
		BC7	
		BC8	
		BC10	
		BC12	

Contents		
Topic	Sub-topic	
Topic 1. Introduction to autonomous vehicles	- Artificial Intelligence	
	- Autonomous vehicles	
	- Autonomous underwater vehicles	
	- Regulatory issues	
Topic 2. Sensors and actuators in marine vehicles	- Sensors:	
	Sound based (Sonar, DVL, range finders)	
	Vision and laser based (Cameras, LIDAR)	
	Inertial Measurement Units (IMU)	
	GNSS and alternative positioning systems	
	- Actuators:	
	Thrusters and alternative propulsion methods	
	Arms and grippers	

Topic 3. Autonomous control	- Open loop control
	- Closed loop control
	- PID
	- Intelligent architectures
	Reactive
	Deliberative
	Hybrid
Topic 4. Autonomous navigation	- Localization
	- Mapping
	- Path planning
Topic 5. Programming underwater vehicles	- Gazebo simulation model
	- Programming framework
	- Real underwater vehicle

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	B2 B4 B6 C4 C6	15	3	18
Document analysis	A4 B2 B4 B5 B13 C2	3	9	12
	C7			
Seminar	B3 B6 B8 C3 C6	9	9	18
Supervised projects	A4 B3 B4 B5 B6 B7	18	72	90
	B8 B9 B11 B13 C2			
	C3 C7			
Mixed objective/subjective test	A4 B4 B5 B6 B11 B13	2	8	10
	C2			
Personalized attention		2	0	2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture / keynote speech	Masterclass where teachers explain the theoretical concepts of the topics, and students can ask questions.
Document analysis	Methodological technique that involves the use of audiovisual and/or bibliographic documents relevant to the subject matter with activities specifically designed for their analysis. In this case, it will be used in a context of "flipped classroom" in which the theoretical concepts will be reviewed by the students independently prior to the lecture session, in which an activity will be carried out to assess their understanding.
Seminar	Workshop carried out at the informatics lab to train students in the tools required to solve de challenge: Python libraries, ROS, Gazebo.
Supervised projects	Autonomous work where students must solve some challenge involving programming an autonomous marine vehicle to solve a task. There can be one of incremental complexity or more than one with independent objectives. In this methodology, students will be organised in groups, so they will have to collaborate to achieve the goal.
Mixed objective/subjective test	Written or oral examination where students will show their understanding of the theoretical concepts of the subject.

Personalized attention	
Methodologies	Description

Supervised projects	In the practical workshops (seminars), the teacher will supervise the students' progress and help them with all the issues that
Seminar	could arise.
Document analysis	
	In the supervised projects, students will have the option of asking their questions and doubts to the teachers while developing
	their project autonomously.
	Document analysis: students will be able to consult lecturers on reference materials prior to the lectures.

		Assessment	
Methodologies	Competencies	Description	Qualification
Mixed	A4 B4 B5 B6 B11 B13	Students will have to show their knowledge and understanding of the theoretical	20
objective/subjective	C2	concepts of the subject by means of a written or oral activity	
test			
Supervised projects	A4 B3 B4 B5 B6 B7	One or more projects will be proposed throughout the course focused on solving	70
	B8 B9 B11 B13 C2	realistic problems with autonomous marine problems using real and simulated robots.	
	C3 C7	These tasks will be developed autonomously by the student outside the classroom	
		and must be defended in front of the teachers.	
Document analysis	A4 B2 B4 B5 B13 C2	Part of the lectures will be used to evaluate the understanding of the documentary	10
	C7	sources, which will be provided by the teachers prior to the class for consultation and	
		understanding. These evaluations will be carried out by means of group work, small	
		reports, questionnaires, or other methodologies that allow an objective assessment of	
		the degree of analysis carried out.	

Assessment comments

In order to obtain a pass in this subject, a minimum mark of 50 must be obtained in all the above methodologies, with a minimum of 35 in the Tutored Work and 15 in the sum of the Subjective Test and Document Analysis. If the student does not pass the subject in the ordinary exam, he/she will have to repeat the necessary activities of the methodology/s that were not passed in the extraordinary exam.

General EMJMD Sustainable Ship and Shipping SEAS 4.0 evaluation rules:

- Students will have only two oportunities to pass a course. If failing to do so, they may be forced to leave the degree.
- No part time or lecture attendance exemption are allowed in this degree.

In the case of plagiarism in internships or teaching assignments, article 11, section 4 b) of the UDC Student Disciplinary Regulations will be taken into account:

b) Failure grade in the exam session in which the offence is committed and with respect to the subject in which it is committed: the student will be graded with a "fail" (numerical grade 0) in the corresponding exam session of the academic year, whether the offence is committed on the first or second occasion. To this end, the student's grade will be modified at the first opportunity, if necessary.

	Sources of information
Basic	- Thor I. Fossen (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Dons
	- Geoff Roberts and Robert Sutton (2006). Advances in unmanned marine vehicles. Institution of Engineering and
	Technology
	- Robin R. Murphy (2000). Introduction to Al Robotics. A Bradford Book
	- Dronekit (2015). https://dronekit-python.readthedocs.io/en/latest/.
Complementary	- Joseph, Lentin (2015). Learning robotics using Python : design, simulate, program, and prototype an interactive
	autonomous mobile robot from scratch with the help of Python, ROS, and Open-CV. Packt Publishing

Recommendations
Subjects that it is recommended to have taken before

Regulatory Framework for Maritime Industry 4.0/730542001

Robotics & Underwater Robotics/730542007

Subjects that are recommended to be taken simultaneously

Industrial Internet of Things (IIoT)/730542015

Industry 4.0 Enabling Technologies/730542010

Subjects that continue the syllabus

Other comments

-According to the different regulations applicable to university teaching, the gender perspective must be incorporated into this subject.-Work will be done to identify and modify sexist prejudices and attitudes and influence the environment to modify them and promote values of respect and equality.-Situations of gender discrimination should be detected and actions and measures should be proposed to correct them. To help in achieving a sustainable environment and to get the objective of number 5 action of the "Green Campus Action Plan" (Healthy and environmentaly and socially sustainable research and teaching): The assignments to be done in this course: - Will be required in digital format. - Will be delivered using Moodle, with no need to print them. In case it is necessary to print them: - Plastics won't be used. - Two side printing will be used. - Recycled paper will be used. - Printing drafts will be avoided. A sustainable use of the resources should be done, together with the prevention of negative impacts on the environment.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.