		Teaching	g Guide		
	Identifying Data				2023/24
Subject (*)	Analysis Technics and Data Modelling for Efficiency Code			730547020d	
Study programme	Máster Universitario en Eficiencia	a Enerxética e S	Sustentabilidade (a	distancia)	
		Descri	ptors		
Cycle	Period	Ye	ar	Туре	Credits
Official Master's Degree	ee 2nd four-month period First Optional			3	
Language	SpanishGalician				
Teaching method	Non-attendance				
Prerequisites					
Department	Ciencias da Computación e Tecr	noloxías da Infor	maciónComputaci	ónMatemáticas	
Coordinador	Fontenla Romero, Oscar E-mail oscar.fontenla@udc.es		Qudc.es		
Lecturers	Fontenla Romero, Oscar E-mail		oscar.fontenla@udc.es		
	Gómez Rodríguez, Marcos marcos.gomez.rodriguez@udc.es			rodriguez@udc.es	
Web	campusvirtual.udc.gal	,			
General description	The main objective of this course is that students learn the fundamental concepts and the main models of data mining, bo			e main models of data mining, both	
	from a standpoint of machine lea	arning and statist	ical, and their appl	ication in the field of e	energy efficiency.

	Study programme competences
Code	Study programme competences
A4	CE4 - Apply data analysis methods for the creation of efficient energy systems
B1	CB6 - Possess and understand knowledge that provides a foundation or opportunity to be original in the development and/or application of
	ideas, often in a research context
B6	CG1 - Search and select alternatives considering the best possible solutions
B14	CG9 - Apply knowledge of advanced sciences and technologies to professional or research practice of efficiency
C3	CT3 - Use the basic tools of information and communication technologies (ICT) necessary for the exercise of their profession and for
	learning throughout their lives

Learning outcomes				
Learning outcomes		Study programme		
			competences	
Demonstrate detailed understanding of the main methods of data mining.	AC4			
Recognize problems that are amenable to energy optimization by using data mining techniques.		BC14		
Application of classification and regression techniques to data obtained by monitoring critical variables on energy efficiency	AC4	BC6		
Propose solutions for improving energy efficiency in systems that have operating data provided by different data acquisition		BC1	CC3	
systems.				
Knowing tools for dimension reduction	AC4			

	Contents
Topic	Sub-topic
1. Introduction to machine learning and data mining	1.1. Preliminary concepts
	1.2. Exploratory data analysis
	1.3. Types of problems: classification, regression, clustering, anomaly detection, etc.
	1.4. Types of learning: supervised, unsupervised, reinforcement, etc.
2. Models for supervised and unsupervised classification of	2.1. Preliminary concepts
data	2.2. Main models: k-nearest neighbors, SVMs, clustering, etc.
3. Regression/system identification models for estimation and	3.1. Preliminary concepts
prediction	3.2. Main models

4. Data processing techniques	4.1. Data preparation and standardization	
	4.2. Dimension reduction	
5. Experimental methodology and analysis of results	5.1. Metrics for evaluating the models and techniques for unbiased estimate of the	
	error	
	5.2. Model selection and analysis of results	
6. Statistical Quality Control	6.1. Control graphs	
	6.2. Process capacity analysis	
7. Applications in Energy Efficiency	7.1. Examples in forecasting	
	7.2. Examples for anomaly detection	

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	B1 B6	10	20	30
Laboratory practice	A4	11	0	11
Supervised projects	A4 B14 C3	0	30	30
Objective test	A4 B1	3	0	3
Personalized attention		1	0	1
(*)The information in the planning table is for	guidance only and does not	take into account the	heterogeneity of the stud	dents.

	Methodologies
Methodologies	Description
Guest lecture /	Classroom activity used to establish the fundamental concepts of matter. It consists of the oral presentation complemented by
keynote speech	the use of audiovisual/multimedia media and performing some questions to students in order to transmit knowledge and
	facilitate learning.
Laboratory practice	Development of practices in the computer lab. This will consist of case studies and examples. Besides the students will solve
	exercises posed by teachers.
Supervised projects	Performing work related to any of the topics on the agenda of the subject. Students will deliver them in electronic format,
	including a memory and a presentation that will have to expose the teacher. These works require the assistance of at least
	one personal tutoring for each group.
Objective test	Evaluation test to be held at the end of course in the corresponding official announcements. It will consist of a written test that
	will be necessary to respond to different theoretical and practical issues.

	Personalized attention
Methodologies	Description
Supervised projects	The personalized attention will be needed to show the progress of the proposed work and to provide appropriate guidance and
	ensure quality. It will also be used for solving conceptual questions and monitoring the execution of the work. These tutorials
	be made in person at the teacher's office.

		Assessment	
Methodologies	Competencies	Description	Qualification
Supervised projects	A4 B14 C3	Autonomous individual or small group work. It will be necessary to deliver the 40	
		materials (memory and presentation) in a timely manner as described in the	
		statement. In addition, it will require oral presentation by all members of the working	
		group, using for that presentation delivered. It is taken into account for the evaluation	
		of this activity the memory, the presentation and also the answers to the teacher's	
		questions during compulsory presentation. Omission of the presentation will be a	
		grade of zero in this activity.	

Objective test	A4 B1	Final test of matter consisting of conducting individual examination. This test will have	60
		questions and related theoretical concepts studied in lectures, laboratory practices or	
		content of such practices tutored projects.	

Assessment comments

In order to pass the course the student must meet the following requirements (score between 0 and 10 in all activities):-Achieving a grade greater or equal than 3.5 in the objective test conducted at the end of the semester.-Achieving a grade greater or equal than 5 adding of all the grades of the assessment tests.

Notes on activities:

- All activities will have a single opportunity to be submitted during the academic year, except for the final objective test, which will have two official exam opportunities.

The evaluation criteria for the second opportunity will be the same as those for the first opportunity.

Evaluation in the case of the early call:

If student requests and presents himself to the early call, 60% of his grade will be the final exam and the other 40% the supervised work. The tutored work must be delivered as a deadline one week before the date of the official exam in the early call. In order to pass the subject, the student must meet the requirements mentioned above.

	Sources of information
Basic	- Basilio Sierra Araujo (2006). Aprendizaje Automático: conceptos básicos y avanzados. Pearson Prentice Hall
	- Douglas Montgomery (2005). Introduction to Statistical Quality Control. John Wiley & Douglas Montgomery (2005).
	- T. Agami Reddy (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists. Springer
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

To help achieve a sustainable environment and meet the objectives of the "Green Campus Ferrol Action Plan" the delivery of documentary work carried out in this subject: 1. It will be requested in virtual format and/or computer support. 2. It will be done through Moodle, in digital format without the need to print them. 3. If done on paper: Plastics will not be used. - Double-sided prints will be made. - Recycled paper will be used. - The printing of drafts will be avoided The full integration of students who, for physical, sensory, psychological or sociocultural reasons, experience difficulties for an adequate, equal and profitable access to university life will be facilitated. Situations of discrimination based on gender must be detected and actions and measures to correct them will be proposed.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.