		Teaching Guide		
	ldentifying D	Data		2023/24
Subject (*)	Mathematics 2		Code	730G05005
Study programme	Grao en Enxeñaría Naval e Oceánica			
		Descriptors		
Cycle	Period	Year	Туре	Credits
Graduate	2nd four-month period	First	Basic training	6
Language	Galician			
Teaching method	Face-to-face			
Prerequisites				
Department	Matemáticas			
Coordinador	Brozos Vázquez, Miguel	E-mai	miguel.brozos.va	azquez@udc.es
Lecturers	Brozos Vázquez, Miguel E-mail miguel.brozos.vazquez@udc.es		azquez@udc.es	
Web	campusvirtual.udc.es			
General description	This course begins with an introduction to Diferential and Integral Calculus in several variables. The second part of th		ables. The second part of the	
	course treats parametrized curves and surfaces, including classical theorems as Green's Theorem for curves and Sto			Theorem for curves and Stoke
	and Divergence's Theorem for surfaces.			

	Study programme competences
Code	Study programme competences
A1	Skill for the resolution of the mathematical problems that can be formulated in the engineering. Aptitude for applying the knowledge on:
	linear algebra; geometry; differential geometry; differential and integral calculation; differential equations and in partial derivatives;
	numerical methods; algorithmic numerical; statistics and optimization
B1	That the students proved to have and to understand knowledge in an area of study what part of the base of the secondary education, and
	itself tends to find to a level that, although it leans in advanced text books, it includes also some aspects that knowledge implicates
	proceeding from the vanguard of its field of study
B2	That the students know how to apply its knowledge to its work or vocation in a professional way and possess the competences that tend to
	prove itself by the elaboration and defense of arguments and the resolution of problems in its area of study
B5	That the students developed those skills of learning necessary to start subsequent studies with a high degree of autonomy
В6	Be able to carrying out a critical analysis, evaluation and synthesis of new and complex ideas.
C4	Recognizing critically the knowledge, the technology and the available information to solve the problems that they must face.

Learning outcomes			
Learning outcomes	Study	y progra	amme
	COI	mpeten	ces
Identify mathematical concepts and tools to solve problems that can appear in an engineering context.	A1	B1	C4
		B2	
		B5	
		В6	
To show the ability of using techniques of Linear Algebra, Geometry and Calculus to be applied in problem solving.	A1	B1	C4
		B2	
		B5	
		В6	

Contents	
Topic	Sub-topic
Sets and functions in R^n	Scalar and vector functions.
	Level sets.
	Continuity.
	Continuity in compact sets.

Differential Calculus	Directional derivative. Partial derivative.
	Differential of a function.
	Gradient vector. Jacobian matrix.
	Higher order derivatives. Introduction to vector calculus.
	Taylor polynomial for scalar functions.
	Critical points. Hessian matrix.
	Conditional extreme values. Lagrange multipliers.
Integral Calculus.	Double integrals.
	Triple integrals.
	Change of variables.
	Applications to the computation of areas and volumes.
Differential Geometry	Parameterized curves and line integrals.
	Integrals of vector functions.
	Gradient functions and conservative vector fields.
	Green's theorem.
	Parameterized surfaces.
	Rotational and divergence.
	Surface integrals.
	Stokes theorem.
	Divergence theorem.

	Planning	I		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 B5 B6 C4	30	30	60
Problem solving	A1 B1 B2 B5 B6 C4	30	30	60
Supervised projects	A1 B1 B2 B5 B6 C4	0	16	16
Mixed objective/subjective test	A1 B1 B2 B5 B6 C4	5	5	10
Personalized attention		4	0	4
(*)The information in the planning table is for	r quidance only and does not	take into account the	heterogeneity of the stud	dents.

Methodologies		
Methodologies	Description	
Guest lecture /	Oral exhibition complemented with the use of audiovisual means and some questions headed to the students, with the	
keynote speech	purpose to transmit knowledges and facilitate the learning	
Problem solving	Technic by means of which one has to solve a specific problematic situation related to the contents of the subject.	
Supervised projects	Homework that professors are going to asses during the course.	
Mixed	Written exam used for the evaluation of the learning, whose distinctive stroke is the possibility to determine if the answers	
objective/subjective	given are or no correct. It constitutes an instrument of measure, elaborated rigorously, that allows to evaluate knowledges,	
test	capacities, skills, performance, aptitudes, attitudes, etc	

Personalized attention	
Methodologies	Description

Supervised projects

The contents of the subject as well as the developed methodologies require that students work by themselves. This will generate some questions that they can ask during the classes or during the office hours. Office hours will be face-to-face if possible, otherwise they will be online.

The students with recognition of part-time dedication and academic exemption from attendance can use the office hours as a reference in order to follow the course and the autonomous work.

Assessment			
Methodologies	Competencies	Description	Qualification
Mixed	A1 B1 B2 B5 B6 C4	Written exams to assess the knowledge of the subject by the students. The subject	80
objective/subjective		will consist on two parts and the final qualification of the subject will be the addition of	
test		the qualifications obtained at each of them.	
		1) The first part will be performed during the teaching period and will involve all the	
		chapters studied until the celebration of the exam. If the student passes this exam, the	
		qualification is retained until the end of the present course (and the extraordinary	
		exam in december if that is the case). This part will be recoverable in the final exam	
		(second chance), to be held in July.	
		2) The second (and final) exam will be carried out in the period of final exams. It will	
		involve the second part of the subject and a second chance to pass the first part.	
		In case of passing any of these two parts, either in the partial exam or in the final	
		exam of the first opportunity, the qualification is retained for the present course until	
		the exam of second opportunity.	
		To pass the subject is compulsory to obtain at least 30% of the maximum grade in	
		each part.	
Supervised projects	A1 B1 B2 B5 B6 C4	Students must do an autonomous work related with the contents of the subject and	20
		following specific guidelines.	

Assessment comments

The students with recognition of part-time dedication and academic

exemption from attendance will be assessed through the objective tests

in the same conditions as the rest of the students.

The second opportunity and the extraordinary exam in december will be graded following the same criteria than in the first one.

Fraudulent behaviour will result in a "0" qualification in the subject for the two opportunities.

Sources of information	
Basic	- Marsden, J., Tromba, A. (2004). Cálculo Vectorial. Addison-Wesley
	- Hwei P. Hsu (1987). Análisis Vectorial. Addison-Wesley
	- Larson, R., Hostetler, R., Edwards, B. (1999). Cálculo y Geometría Analítica, Vol. 2. McGraw-Hill
	- Gómez Bernúdez, C, Gómez Gratacos, F. (2018). Problemas de Cálculo. Andavira
	- Salas, L., Hille, E., Etgen, G. (2013). Calculus, vol I-II. Reverté

Complementary Recoméndase recursos bibliográficos da páxina http://maxima.sourceforge.net/para o uso do programa Maxima, que servirá de apoio nesta materia.

	Recommendations	
	Subjects that it is recommended to have taken before	
Mathematics 1/730G05001		
Physics 1/730G05002		
	Subjects that are recommended to be taken simultaneously	
Physics 2/730G05006		
	Subjects that continue the syllabus	
Differential equations/730G05011		
	Other comments	

Homework of this course will attend to the following:

- Unnecessary printed drafts will be avoided.

In general, a sustainable use of natural resources will be

done. Moreover, ethic principles related to sustainability will be

followed. The development of this course will be done following the basic principle of non-discrimination, particularly of non-discrimination on the basis of gender, and promoting the values ?? of respect and equality among people.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.