		Guia docente			
	Datos Identificativos				2023/24
Asignatura (*)	Robótica Inteligente y Sistemas	Autónomos		Código	770538005
Titulación	Máster Universitario en Informáti	ca Industrial e Robótica			'
		Descriptores			
Ciclo	Periodo	Curso		Tipo	Créditos
Máster Oficial	1º cuatrimestre	Primero		Obligatoria	4.5
Idioma	Castellano		'		
Modalidad docente	Híbrida				
Prerrequisitos					
Departamento	Ciencias da Computación e Tecr	noloxías da Información			
Coordinador/a	Duro Fernández, Richard José Correo electrónico richard.duro@udc.es		dc.es		
Profesorado	Bellas Bouza, Francisco Javier	Correo el	ectrónico	francisco.bellas	@udc.es
	Duro Fernández, Richard José			richard.duro@u	dc.es
	Romero Montero, Alejandro			alejandro.romer	ro.montero@udc.es
Web		'			
Descripción general	El objetivo de esta asignatura es	proporcionar a los estudian	tes del más	ster una visión ac	tualizada de la robotización, con
	una perspectiva diferente a la de la automatización en cuanto al tipo de hardware sobre el que se aplica, más flexible y				
	heterogéneo y sobre todo de los sistemas de control inteligentes. Los alumnos deberán trabajar con unidades robóticas				
	reales o simuladas. De esta forma, adquirirán los conocimientos y las destrezas básicas para poder manejar todas las				
	variables involucradas en la introducción de sistemas inteligentes en el campo de la robótica de manera que se pueda				
	dotar de autonomía a los robots.				

	Competencias del título
Código	Competencias del título
A1	CE01 - Capacidad para aplicar técnicas de análisis de datos y técnicas inteligentes en robótica y/o informática industrial
A4	CE04 - Capacidad para uso y desarrollo de código y librerías que permitan captar el entorno y actuar sobre él en sistemas robóticos y/o industriales
A5	CE05 - Capacidad para uso y desarrollo de código y librerías que permitan realizar visión por computador o realidad aumentada sobre sistemas robóticos y/o industriales
A7	CE07 - Capacidad para definir, diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos
A9	CE09 - Capacidad para el uso, simulación y diseño de sistemas mecánicos empleados en entornos robóticos y/o industriales
A10	CE10 - Capacidad para el uso, simulación e implementación de tecnologías de fabricación tradicionales o emergentes empleados en sistemas robóticos y/o industriales
B6	CG1 - Buscar y seleccionar alternativas considerando las mejores soluciones posibles
В9	CG4 - Extraer, interpretar y procesar información, procedente de diferentes fuentes, para su empleo en el estudio y análisis
B10	CG5 - Capacidad para proponer nuevas soluciones en proyectos, productos o servicios
B11	CG6 - Adquirir nuevos conocimientos y capacidades relacionados con el ámbito profesional del máster
B14	CG9 - Aplicar conocimientos de ciencias y tecnologías avanzadas a la práctica profesional o investigadora
B16	CG11 - Valorar la aplicación de tecnologías emergentes en el ámbito de la industria y la robótica
B17	CG12 - Desarrollar la capacidad para asesorar y orientar sobre la mejor forma o cauce para optimizar los recursos
C1	CT01 - Adquirir la terminología y nomenclatura científico-técnica para exponer argumentos y fundamentar conclusiones
C3	CT03 - Aplicar una metodología que fomente el aprendizaje y el trabajo autónomo

Resultados de aprendizaje			
Resultados de aprendizaje	Com	petencia	as del
		título	
Conocer los diferentes tipos de robots en función de su aplicación.	AM7	BM10	CM1
			СМЗ

Conocer las estructuras mecánicas básicas con las que se construyen las distintas morfologías robóticas, así como las claves	AM9	BM6	CM1
y parámetros de su comportamiento.		BM10	СМЗ
		BM11	
Conocer los principios de funcionamiento de los distintos tipos de sensores y actuadores adaptados a los diferentes entornos	AM4	ВМ9	CM1
de operación.	AM5	BM10	СМЗ
		BM11	
Disponer de una visión general de las diferentes posibilidades y objetivos de control en robots inteligentes, así como las	AM1	BM6	CM1
tecnologías básicas que se pueden aplicar.	AM7	BM9	СМЗ
	AM10	BM14	
		BM16	
		BM17	
Conocer de forma general las capacidades y aproximaciones más conocidas a la colaboración autónoma entre robots así	AM4	BM11	CM1
como los principios y problemas de la colaboración entre robots y humanos.	AM5	BM14	СМЗ
	AM7	BM17	

	Contenidos
Tema	Subtema
Robots en aplicaciones industriales (líneas de producción y	
otros entornos en planta).	
Robots en entornos abiertos y sus aplicaciones	
Topologías, cinemáticas y principios de operación de	
diferentes categorías de robots.	
Sensorización y actuación, principios y dispositivos de	
acuerdo con las diferentes aplicaciones.	
Inteligencia y cognición, visión general de principios y	
diferencias con sistemas tradicionales.	
Introducción a sistemas de control y comunicaciones en	
robots inteligentes.	
Principios de colaboración entre robots y robótica	
colaborativa.	

resenciales Horas no presenciales / trabajo autónom	
	110
20 5	25
0 50	50
9 26	35
2.5 0	2.5
_	

	Metodologías
Metodologías	Descripción
Sesión magistral	Exposición oral por parte de los profesores de la materia del temario teórico. Se podrá hibridizar esta metodología con una
	metodología de aprendizaje colaborativo.
Trabajos tutelados	Trabajos en los que se elaborarán algunos de los temas de teoría. Estos trabajos serán realizados por los alumnos de forma
	autónoma y su avance será tutorizado por los profesores.

Prácticas de	Sesiones de laboratorio o remotas mediante TICs en las que se explicarán las características de las plataformas robóticas
laboratorio	seleccionadas para a asignatura y su software de programación. Ademáis, estas clases serán utilizadas para que los alumnos
	programen y prueben en el robot real los controladores que van haciendo para los trabajos tutelados.

	Atención personalizada
Metodologías	Descripción
Prácticas de	Se realizará un seguimiento de los alumnos resolviendo dudas y discutiendo con ellos la evolución de los trabajos tutelados y
laboratorio	prácticas asignadas
Trabajos tutelados	

		Evaluación	
Metodologías	Competéncias	Descripción	Calificación
Prácticas de	A4 A5 A9 B6 C1		30
laboratorio			
Sesión magistral	A7 A9 B6 B9 B11 B16		20
	B17 C1 C3		
Trabajos tutelados	A1 A4 A5 A10 B10		50
	B14		

Observaciones evaluación

La evaluación de esta asignatura está basada en la superación de las dos metodologías principales, Trabajos Tutelados acumulado con sesión Magistral y prácticas de laboratorio, de forma independiente. La segunda está centrada en la demostración práctica de los conocimientos y habilidades adquiridos para resolver problemas en robótica, y la primera en la realización de un examen o la exposición de un trabajo sobre un tema concreto dentro de temario teórico según decida el profesor en función del número y capacidad de los alumnos. Así, en caso de que el alumno no supere la asignatura en la convocatoria ordinaria, deberá repetir todas las actividades de la/s metodogía/s que no fueron superadas en la convocatoria extraordinaria. Por ejemplo, si un alumno aprobó la parte de la Clase Magistral y Trabajos Tutelados pero suspendió las prácticas, deberá repetir éstos. En el caso de dispensa académica, el alumno habrá de realizar los trabajos a entregar en las prácticas y trabajos tutelados. En el caso de plagio en prácticas o trabajos docentes entregados, se tendrá en cuenta el artículo 11, apartado 4 b), del Reglamento disciplinar del estudiante de la UDC:

b) Calificación de suspenso en la convocatoria en que se cometa la falta y respecto de la materia en que se cometiera: el/la estudiante será calificado con ?suspenso? (nota numérica 0) en la convocatoria correspondiente del curso académico, tanto si la comisión de la falta se produce en la primera oportunidad como en la segunda. Para esto, se procederá a modificar su calificación en el acta de primera oportunidad, si fuera necesario.

evaluación en la convocatoria adelantada será igual a las demás convocatorias.

Los alumnos que se acojan a la matrícula parcial,

podrán acordar con profesor la posibilidad de hacer actividades alternativas a

las presenciales.

	Fuentes de información
Básica	- Nikolaus Correll (2020). Introduction to Autonomous Robots. Magellan Scientific
	- Robin R. Murphy (2019). Introduction to Al Robotics. MIT Press
	- Rolf Pfeiffer, Josh Bongard (2006). How the Body Shapes the way we Think. MIT Press
	https://open.umn.edu/opentextbooks/textbooks/introduction-to-autonomous-robotshttps://open.umn.edu/opentextbook
	s/textbooks/introduction-to-autonomous-robots
Complementária	

Recomendaciones
Asignaturas que se recomienda haber cursado previamente

INFORMÁTICA/730G03004
FUNDAMENTOS DE AUTOMATICA/730G03015
ACTUADORES Y SENSORES/730G03045

Asignaturas que se recomienda cursar simultáneamente

Asignaturas que continúan el temario

Otros comentarios

Para ayudar a conseguir un entorno sostenible y cumplir con el objetivo del Plan de Acción Green Campus, la entrega de los trabajos documentales que se realicen en esta materia:- Se solicitará en formato virtual y/o soporte informático- Se realizará a través de Moodle, en formato digital sin necesidad de imprimirlos. De realizarse en papel:- No se emplearán plásticos.- Se realizarán impresiones a doble cara.- Se empleará papel reciclado.- Se evitará la impresión de borradores.

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías