|                     |                                                                                                                           | Teachin          | g Guide               |                                       |                                   |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------------------|-----------------------------------|--|
| Identifying Data    |                                                                                                                           |                  |                       | 2023/24                               |                                   |  |
| Subject (*)         | Advanced Physical Chemistry Code                                                                                          |                  |                       | 610G01020                             |                                   |  |
| Study programme     | Grao en Química                                                                                                           |                  |                       |                                       |                                   |  |
|                     |                                                                                                                           | Desc             | riptors               |                                       |                                   |  |
| Cycle               | Period                                                                                                                    | Ye               | ear                   | Туре                                  | Credits                           |  |
| Graduate            | 1st four-month period                                                                                                     | For              | urth                  | Obligatory                            | 6                                 |  |
| Language            | SpanishEnglish                                                                                                            |                  | ·                     |                                       | ·                                 |  |
| Teaching method     | Face-to-face                                                                                                              |                  |                       |                                       |                                   |  |
| Prerequisites       |                                                                                                                           |                  |                       |                                       |                                   |  |
| Department          | Química                                                                                                                   |                  |                       |                                       |                                   |  |
| Coordinador         | Iglesias Martinez, Emilia                                                                                                 |                  | E-mail                | emilia.iglesias@                      | udc.es                            |  |
| Lecturers           | Canle López, Moisés                                                                                                       |                  | E-mail                | moises.canle@u                        | moises.canle@udc.es               |  |
|                     | Iglesias Martinez, Emilia emilia.iglesias@udc.es                                                                          |                  |                       | udc.es                                |                                   |  |
|                     | Santaballa Lopez, Juan Arturo arturo.santaballa@udc.es                                                                    |                  |                       | a@udc.es                              |                                   |  |
| Web                 | campusvirtual.udc.es                                                                                                      |                  |                       |                                       |                                   |  |
| General description | KEY WORDS: ionic interactions a                                                                                           | and molecular t  | transport phenomen    | a. Rate equation and                  | reaction mechanisms. Chemical     |  |
|                     | Kinetic Theories. Homogeneous catalysis. Introduction to electrochemical kinetics. Macromolecules and colloids.           |                  |                       | molecules and colloids.               |                                   |  |
|                     | Advanced Physical Chemistry addresses the phenomenological study of the interactions between ions and molecules,          |                  |                       |                                       | s between ions and molecules,     |  |
|                     | which allow us to understand the configuration of macromolecules of chemical and biological interest. Transport           |                  |                       |                                       |                                   |  |
|                     | phenomena in solution makes possible the characterization of macromolecules and are central to the application of certain |                  |                       | central to the application of certain |                                   |  |
|                     | techniques to kinetic study of read                                                                                       | ctions. Chemic   | al kinetics introduce | s the time variable in                | the study of a chemical reaction, |  |
|                     | analyzing the factors that modify                                                                                         | reaction rate in | order to determine    | the rate equation, and                | d finally to propose a reaction   |  |
|                     | mechanism at the molecular level to interpret the observed macroscopic reaction.                                          |                  |                       |                                       |                                   |  |

|      | Study programme competences / results                                                                                              |
|------|------------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences / results                                                                                              |
| A1   | Ability to use chemistry terminology, nomenclature, conventions and units                                                          |
| А3   | Knowledge of characteristics of the different states of matter and theories used to describe them                                  |
| A4   | Knowledge of main types of chemical reaction and characteristics of each                                                           |
| A10  | Knowledge of chemical kinetics, catalysis and reaction mechanisms                                                                  |
| A14  | Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry                               |
| A19  | Ability to follow standard procedures and handle scientific equipment                                                              |
| A20  | Ability to interpret data resulting from laboratory observation and measurement                                                    |
| A22  | Ability to plan, design and develop projects and experiments                                                                       |
| A23  | Critical standards of excellence in experimental technique and analysis                                                            |
| A25  | Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life |
| A27  | Ability to teach chemistry and related subjects at different academic levels                                                       |
| B1   | Learning to learn                                                                                                                  |
| В3   | Application of logical, critical, creative thinking                                                                                |
| B4   | Working independently on own initiative                                                                                            |
| C3   | Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life  |
| C6   | Ability to assess critically the knowledge, technology and information available for problem solving                               |

| Learning outcomes |                 |
|-------------------|-----------------|
| Learning outcomes | Study programme |
|                   | competences /   |
|                   | results         |

| Methodology:                                                                                                             | А3  | B1 | С3 |
|--------------------------------------------------------------------------------------------------------------------------|-----|----|----|
| · Be able to plan, design, and perform experiments related to the transport of matter and charge transport.              | A4  | В3 |    |
| · Be able to propose and design a kinetic study of a chemical reaction.                                                  | A10 | B4 |    |
| · Simple software application to the quantitative analysis of kinetic data.                                              | A19 |    |    |
| · Interpretation of kinetic results on the basis of reaction mechanisms.                                                 | A20 |    |    |
| · Simulation / prediction of unpublished data from the rate equation                                                     | A22 |    |    |
|                                                                                                                          | A23 |    |    |
|                                                                                                                          | A27 |    |    |
| Conceptual:                                                                                                              | A1  | В3 |    |
| · Knowledge of interionic interactions and inter-or intramolecular interactions and their relationship with association  | A4  |    |    |
| phenomena, self-aggregation or molecular conformation.                                                                   | A10 |    |    |
| · Mastering the own methods of chemical kinetics. Interpretation at molecular level (mechanistic) of chemical reactions. | A14 |    |    |
| Understand and know the factors that can change the rate of a chemical reaction.                                         |     |    |    |
| · Understand the catalysis process and its relation to chemical-, photochemical- or electrochemical-activation           |     |    |    |
| Attitudinal:                                                                                                             | A22 | B1 | СЗ |
| · Provide appropriate reports of an experimental study                                                                   | A23 | В3 | C6 |
| · Analyze and critique published kinetic studies of low difficulty.                                                      | A25 | B4 |    |
|                                                                                                                          | A27 |    |    |

|                                         | Contents                                                                                 |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Topic                                   | Sub-topic                                                                                |  |  |
| Ionic and molecular interactions        | · Ionic interactions in the liquid phase: activity coefficient. Debye-Hucke's law. Ionic |  |  |
|                                         | strength.                                                                                |  |  |
|                                         | · Molecular interactions. Dipole moment. Polarizability: equation of Clausius-Mossotti.  |  |  |
|                                         | Dipolar interactions. Hydrophobic interaction: self-aggregation and molecular            |  |  |
|                                         | conformation.                                                                            |  |  |
|                                         | ·Colloids: direct and reverse micelles, biological membranes.                            |  |  |
|                                         | · Macromolecules                                                                         |  |  |
| Transport phenomena                     | · Flux. Diffusion. Fick's first law. Stokes-Einstein equation.                           |  |  |
|                                         | - Thermal conductivity                                                                   |  |  |
|                                         | · Electrical conductivity: the Debye-Huckel-Onsager theory.                              |  |  |
|                                         | - Viscosity                                                                              |  |  |
| Rate equation and reaction mechanism    | · Integrated rate equation. Initial rates. Order of reaction. The method of flooding.    |  |  |
|                                         | Physical properties in kinetic studies. Experimental techniques.                         |  |  |
|                                         | · Complex reaction schemes: parallel and concurrent reactions, reversible reactions,     |  |  |
|                                         | consecutive reactions.                                                                   |  |  |
|                                         | · The steady-state approximation.                                                        |  |  |
|                                         | · Reaction mechanisms: elementary reactions. Deduction of reaction mechanisms.           |  |  |
| Kinetic Theories and their applications | · Collisions theory: the frequency factor                                                |  |  |
|                                         | · Transition state theory. The activated complex. Statistical thermodynamics             |  |  |
|                                         | approach. Activation parameters. Potential energy surfaces.                              |  |  |
|                                         | · Reactions in the gas phase: Lindeman mechanism                                         |  |  |
|                                         | · Reactions is solution. Diffusion controlled reactions                                  |  |  |
|                                         | · Photochemical reactions                                                                |  |  |

| Catalysis                                | Homogeneous, heterogeneous and microheterogeneous catalysis                         |
|------------------------------------------|-------------------------------------------------------------------------------------|
|                                          | - General mechanism of catalysis: rate equations.                                   |
|                                          | · Homogeneous catalysis: nucleophilic catalysis, acid-base catalysis,               |
|                                          | · Linear free energy relations: the Swain-Scott equation, the Bronsted law, the     |
|                                          | Hammett correlation, the Taft equation.                                             |
|                                          | Microheterogeneous catalysis; micellar catalysis, enzyme catalysis.                 |
|                                          | · Heterogeneous catalysis: Langmuir isoterm. Rate equations.                        |
| Introduction to electrochemical kinetics | Electrochemical reactions: special topics                                           |
|                                          | · Interface electrode-solution: the Gouy-Chapman model                              |
|                                          | Rate of charge transfer. The Butler-Volmer equation                                 |
|                                          | · Voltametry                                                                        |
| Lab experiments                          | · Laboratory experiments relative to transport phenomena, determination of reaction |
|                                          | rate equations and catalytic processes.                                             |

|                                 | Planning            | g                     |                    |             |
|---------------------------------|---------------------|-----------------------|--------------------|-------------|
| Methodologies / tests           | Competencies /      | Teaching hours        | Student?s personal | Total hours |
|                                 | Results             | (in-person & virtual) | work hours         |             |
| Guest lecture / keynote speech  | A4 A10 A25 A27 B3   | 21                    | 50                 | 71          |
| Seminar                         | A1 A4 A10 A14 B1 B3 | 7                     | 28                 | 35          |
|                                 | C6                  |                       |                    |             |
| Laboratory practice             | A19 A20 A22 A23     | 20                    | 20                 | 40          |
|                                 | A25 A27 B1 B3 B4 C3 |                       |                    |             |
|                                 | C6                  |                       |                    |             |
| Mixed objective/subjective test | A1 A3 A4 A10 A14    | 4                     | 0                  | 4           |
|                                 | A20                 |                       |                    |             |
| Personalized attention          |                     | 0                     | 0                  | 0           |

|                      | Methodologies                                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Methodologies        | Description                                                                                                                     |
| Guest lecture /      | In the lectures the teacher introduces all concepts, models, methodologies and theories of the fundamental contents of the      |
| keynote speech       | discipline program. It could be also possible to use case studies, project-based learning (PBL) & amp; flipped classroom.       |
| Seminar              | This activity will be carried out in interactive way.                                                                           |
|                      | Concepts will be emphasized through the detailed development of standard exercises, and doubts raised by students will be       |
|                      | solved.                                                                                                                         |
| Laboratory practice  | Experiments related to the concepts addressed in the course are carried out. It consists of two stages:                         |
|                      | The first includes the understanding of the experiment/s to be carried out in the lab (its theoretical basis and related        |
|                      | techniques) and the development of the experimental work (planning, execution and critical analysis of the obtained the         |
|                      | results.                                                                                                                        |
|                      | The second stage involves the delivery of the corresponding e-report. Presentation (including oral exposition), methodological  |
|                      | justification and critical interpretation, as well as the comparison with bibliographic data, will be assessed.                 |
| Mixed                | Proposal of questions, exercises and/or simulations, related with lectures, seminars and lab experiments. The student alone     |
| objective/subjective | will demonstrate, during a fixed time interval, the acquired knowledge and his capacity for solving exercises and/or developing |
| test                 | conceptual questions.                                                                                                           |

| Personalized attention |             |
|------------------------|-------------|
| Methodologies          | Description |



## Seminar Laboratory practice

It recommends to the students the use of tutorials to solve all kind of doubts, questions and concepts that have not remained sufficiently clear, and that refer, either to the development of material concepts or to find the answers to problems introduced in the seminars, laboratory practices or in the preparation of the final test. The teachers will be available to solve any question about the contents of the subject at the established timetable.

Students with a waiver for academic assistance will have both face-to-face and e-mail tutorials or Teams, whenever necessary.

Before carrying out the experimental laboratory work, the student must demonstrate an understanding of the scientific article that describes the experience to be reproduced. During the development of the experiment, the student is advised on the complications that may arise. After it, the teachers will guide each student in the interpretation of the results, based on the theoretical models developed in the classroom for the quantitative treatment of the results.

|                      |                                         | Assessment                                                                               |               |
|----------------------|-----------------------------------------|------------------------------------------------------------------------------------------|---------------|
| Methodologies        | ethodologies Competencies / Description |                                                                                          | Qualification |
|                      | Results                                 |                                                                                          |               |
| Laboratory practice  | A19 A20 A22 A23                         | In the evaluation of this activity, the laboratory work and the Results Report are taken | 20            |
|                      | A25 A27 B1 B3 B4 C3                     | into account:                                                                            |               |
|                      | C6                                      | -Interview in the Laboratory, prior to the development of the experiment, which          |               |
|                      |                                         | reflects the understanding of the chemical system, the methodology to be applied, the    |               |
|                      |                                         | technique used and the necessary safety.                                                 |               |
|                      |                                         | -Development of the experiment in the Laboratory: planning, data collection and their    |               |
|                      |                                         | analysis.                                                                                |               |
|                      |                                         | -Report of results that will be evaluated in terms of presentation, quantitative         |               |
|                      |                                         | treatment and explanation of the results based on theoretical models                     |               |
| Mixed                | A1 A3 A4 A10 A14                        | Written examination to answer theoretical questions and solve exercises related to       | 80            |
| objective/subjective | A20                                     | the contents of the lectures, seminars and Lab experiments.                              |               |
| test                 |                                         | It is required to carry out the Lab practices and pass the mixed test to pass the        |               |
|                      |                                         | course. The qualification of a surpassed activity will be kept in the remaining          |               |
|                      |                                         | opportunities of the current academic year (second opportunity).                         |               |
|                      |                                         | If the mixed probe is not passed, even if the average qualification of all activities is |               |
|                      |                                         | higher than 5, the numerical mark that appears in the "Acta" will be score               |               |
|                      |                                         | obtained in the mixed test.                                                              |               |
|                      |                                         | The student will obtain the qualification of Not Presented when he/she does not carry    |               |
|                      |                                         | out the Laboratory classes and, therefore, does not appear for the final examination     |               |
|                      |                                         | either.                                                                                  |               |
|                      |                                         | Students who request an early call for December will be governed by the present          |               |
|                      |                                         | teaching guide.                                                                          |               |

## **Assessment comments**

-Attendance to all laboratory practices and delivery of the corresponding report are required, either for partial-time student or for full-time student. -Attendance to seminars is not mandatory for students with academic exemption. -To pass the course it will be necessary to obtain a mark not lower than 5.0 out of 10 in all valuable activities and achieve a minimum qualification of 5.0 in the proportional sum of all the activities. -The qualification of "Matricula" is preferably granted at the first opportunity.-Second Opportunity: repetition of the exam upon contents of seminars, lab practical and theory clases. -Students in a partial time or in partial time dedication option with academic exemption have face-to-face and/or online tutoring to resolve any question that may arise in preparing the course.-The fraudulent completion of the evaluation tests, once verified, will directly imply the qualification of suspense in the call in which it is practiced; the student will be graded with "suspenso" (numerical grade 0) in the corresponding call of the academic year, regardless of whether the fraud occurs on the first or on the second opportunity, so that, if necessary, even the qualification of the first opportunity would be modified.

|               | Sources of information                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| Basic         | - P. W. Atkins, J. de Paula (2008). Química Física, 8ª Ed Panamericana                                             |
|               | - Espenson J. H. (1995). Chemical kinetics and reaction mechanisms 2ª ed McGraw-Hill, New York.                    |
|               | - Laidler K. J. (1994). Chemical Kinetics . Harper and Row, New York.                                              |
|               | - Bockris, J.O.M., Reddy, A K.N. (1998). Electroquímica Moderna Reverté. 1980                                      |
|               | - P. W. Atkins, J. de Paula (2010). Physical Chemistry, 9th Ed Oxford University Press                             |
| Complementary | - P. L. Brezonik (1994). Chemical Kinetics and Process Dynamic in Aquatic Systems Lewis Publishers                 |
|               | - P. Sanz Pedredo (1992). Físicoquímica para Farmacia y Biología Masson-Salvat Medicina                            |
|               | - R. A. Jackson (2004). Mechanism in Organic Reactions Royal Society of Chemistry (RSC)                            |
|               | - LEVINE I. N. (2004). Fisicoquímica 5ª ed McGraw-Hill, Madrid                                                     |
|               | - KORITA, J, DVORAK, J., KAVAN, L. (1987). Principles of Electrochemistry. 2nd ed Wiley, Chichester                |
|               | - BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2 <sup>a</sup> ed Oxford University Press, New York |
|               | - J. BERTRAN-RUSCA, J. NUÑEZ-DELGADO Eds , (2002). Química Física, vol. II. Ariel Ciencia                          |
|               | - S. R. Logan (2000). Fundamentos de Cinética Química. Addison Wesley                                              |
|               | - BOCKRIS, J.O.M., REDDY, A.K.N., GAMBOA-ADELCO, M.E. (2000). Modern Electrochemistry 2A. Fundamentals             |
|               | of Electrodics Kluwer Academic/Plenum Press: New York                                                              |

| Recommendations                                          |
|----------------------------------------------------------|
| Subjects that it is recommended to have taken before     |
| General Chemistry 1/610G01007                            |
| General Chemistry 2/610G01008                            |
| General Chemistry 3/610G01009                            |
| Chemistry Laboratory 1/610G01010                         |
| Physical Chemistry 1/610G01016                           |
| Physical Chemistry 2/610G01017                           |
| Physical Chemistry 3/610G01018                           |
| Experimental Physical Chemistry/610G01019                |
| Subjects that are recommended to be taken simultaneously |
|                                                          |
| Subjects that continue the syllabus                      |
|                                                          |
| Other comments                                           |

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

Prerequisites: -They are necessary the knowledges of Chemistry and Physical Chemistry materias -To know draft,synthesize and correctly present a work. -To dominate the graphic representation, linear regression with basic knowledges of statistics. -To use at basic

level tools of computing, such as Excel, Word, Power Point. -It recommends to know English of intermediate level (reading).