

		Teaching Guide			
Identifying Data		2023/24			
Subject (*)	Intelligent Robotics I	obotics I Code 614544019		614544019	
Study programme	Máster Universitario en Intelixencia	a Artificial	I	I	
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	ee 1st four-month period	First	Obligatory	3	
Language	English				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecnol	loxías da Información			
Coordinador	Bellas Bouza, Francisco Javier	E-mail	francisco.bellas	francisco.bellas@udc.es	
Lecturers	Bellas Bouza, Francisco Javier	E-mail	francisco.bellas@udc.es		
Web			I		
General description	The main objective of this subject is	s to provide the conceptual bas	ses of intelligent robotic	cs, that is, how AI techniques ap	
	to the particular case of robots with	the aim of achieving autonom	ous operation. All the c	levelopment of the subject is ba	
	on the distinctive properties of robo	otics, such as operation in real	environments and the	existence of a physical body.	
	Based on these premises, the subj	ect covers fundamental aspect	s of sensing, action an	d control, with a practical appro-	
			-		

	Study programme competences / results
Code	Study programme competences / results
A18	CE17 - Understanding and assimilation of the capacities and limitations of intelligent robotic systems, together with the technologies
	supporting them
A19	CE18 - Building up the ability to choose, design and implement AI based strategies to provide robotic systems, both individual and
	collective, with the capacities required to perform their tasks in a suitable way, according to the goals and constraints to be taken into
	account
B1	CG01 - Maintaining and extending theoretical foundations to allow the introduction and exploitation of new and advanced technologies in
	the field of AI
B2	CG02 - Successfully addressing each and every stage of an AI project
B3	CG03 - Searching and selecting that useful information required to solve complex problems, with a confident handling of bibliographical
	sources in the field
B6	CB01 - Acquiring and understanding knowledge that provides a basis or opportunity to be original in the development and/or application of
	ideas, frequently in a research context
B7	CB02 - The students will be able to apply the acquired knowledge and to use their capacity of solving problems in new or poorly explored
	environments inside wider (or multidisciplinary) contexts related to their field of study
B9	CB04 - The students will be able to communicate their conclusions, their premises and their ultimate justifications, both to specialised and
	non-specialised audiences, using a clear style language, free from ambiguities
C3	CT03 - Use of the basic tools of Information and Communications Technology (ICT) required for the student's professional practice and
	learning along her life
C5	CT05 - Understanding the importance of the entrepreneurial culture and knowledge of the resources within the entrepreneur person's
	means
C7	CT07 - Developing the ability to work in interdisciplinary or cross-disciplinary teams to provide proposal that contribute to a sustainable
	environmental, economic, political and social development
C8	CT08 - Appreciating the importance of research, innovation and technological development in the socioeconomic and cultural progress of
	society

Learning outcomes

Learning outcomes	Study	/ progra	mme
	con	npetenc	es/
		results	
To know the elements of a robotic system at hardware and software level, and to understand the basics of Artificial Intelligence	AC17	BC1	CC8
applied to robots (embodiment, real world, real time).		BC3	
To know the operating principles of the different types of sensors and actuators adapted to the different operating	AC17	BC1	CC3
environments.		BC6	CC8
To have an overview of the different traditional control techniques in intelligent robots, as well as the technologies that support	AC18	BC3	CC8
them.			
Develop an autonomous control system for operation in a simulated or real environment.	AC18	BC2	CC5
		BC7	CC7
		BC9	

	Contents
Торіс	Sub-topic
Elements of an Intelligent Robotic System	Robotics and Artificial Intelligence
	Environment, embodiment and reality gap
	Design of autonomous robots
Sensing and actuation.	Distance sensors, inertial sensors, cameras, microphones
	Actuators and effectors
	Degrees of freedom
	Motors, displays, speakers
	Communications
	Natural interaction
Knowledge based robotics (deliberative)	Knowledge representation
	Classical control architectures
	Navigation (locomotion)
Behavior based robotics (reactive)	Rule-based systems
	Fuzzy logic
	Subsumption architectures
Hybrid approaches	Main architectures
	Cognitive robotics
Learning in autonomous robotics	Applied to sensing and actuation
	Applied to control (reinforcement learning, evolutionary robotics, neural control)

Planning	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
B2 B7 C3 C7 C8	7.5	30	37.5
A18 A19 B1 B6 C8	9	0	9
B6 C3 C7	3	6	9
A18 A19 B1 B3 B9 C5	1.5	3	4.5
A18 B1 B6 B9	2	12	14
	1	0	1
	Competencies / Results B2 B7 C3 C7 C8 A18 A19 B1 B6 C8 B6 C3 C7 A18 A19 B1 B3 B9 C5	Results (in-person & virtual) B2 B7 C3 C7 C8 7.5 A18 A19 B1 B6 C8 9 B6 C3 C7 3 A18 A19 B1 B3 B9 C5 1.5	Competencies / Results Teaching hours (in-person & virtual) Student?s personal work hours B2 B7 C3 C7 C8 7.5 30 A18 A19 B1 B6 C8 9 0 B6 C3 C7 3 6 A18 A19 B1 B3 B9 C5 1.5 3 A18 B1 B6 B9 2 12

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description

Supervised projects	Practices in which some of the techniques seen in the theoretical classes on robot simulation environments and the robotic
	platforms selected by the teachers of the assignment will be implemented. These works will be carried out by the students
	autonomously and their progress will be tutored by the teachers.
Guest lecture /	Oral presentation by the teachers of the theoretical subject. This methodology can be hybridized with a collaborative learning
keynote speech	methodology.
Seminar	Practical programming classes in which the basic tools used in the tutored work will be explained: simulator and programming
	libraries.
Document analysis	Methodological technique that involves the use of audiovisual and/or bibliographic documents relevant to the subject matter
	with activities specifically designed for their analysis. In this case, it will be used in a context of " inverted class" in
	which the theoretical concepts will be reviewed by the students independently prior to the lecture session, in which there will
	be an activity to evaluate their understanding.
Objective test	Individual written exam of the theoretical part of the course.

	Personalized attention
Methodologies	Description
Document analysis	Supervised projects the use of personalised attention is recommended in these activities to resolve conceptual or procedural
Seminar	doubts that may arise during the resolution of the practical problems. In addition, the personalised attention will also focus on
Supervised projects	the explanation, by the student, of the proposed solution.
	Seminar: the teacher will help students to understand the practical tools.
	Analysis of documentary sources: students will be able to consult the lecturers on reference materials prior to the lecture sessions.
	Part-time students will receive personalised attention in all of the above methodologies through online tutoring.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Objective test	A18 B1 B6 B9	Final test of the subject which will consist of an individual written examination of the	30
		theory part.	
		General evaluation criteria:	
		* Correct answers and appropriate solutions to the test questions.	
Document analysis	A18 A19 B1 B3 B9 C5	Part of the lectures will be used to evaluate the understanding of the documentary	20
		sources, which will be provided by the teaching staff prior to the class for consultation	
		and understanding. These evaluations will be carried out by means of group work,	
		small reports, questionnaires, or other methodologies that allow an objective	
		assessment of the degree of analysis carried out.	
Supervised projects	B2 B7 C3 C7 C8	Several practical tasks will be proposed throughout the course focused on solving	50
		problems using autonomous robots. These tasks will be developed autonomously by	
		the student and will have to be defended afterwards. It is essential to obtain a passing	
		grade in this methodology independently (minimum grade of 5 considering that it is	
		assessed from 0 to 10) in order to pass the course.	

Assessment comments

The evaluation of the subject will consist of two different parts: theory (50%) and practical work (50%). The theoretical part will be evaluated by means of an objective test and by means of the Document analysis carried out during the course. The practical part will be evaluated on the basis of the solution achieved by the students, which must be presented at the end of each practical (which may include a report). It will be necessary to pass the theory part and the practical part separately in order to pass the course.

Attendance to both theory and practical classes will be compulsory in order to pass the course, except in cases of justified absence. For those students who have an exemption, the value of the Document analysis methodology will be included in the Objective Test (50). In addition, they will not be obliged to attend the theory classes.

Second chance assessment: Students will have to make up each failed part (theory and/or practical). If one of the two parts was passed during the first opportunity, the student may choose to keep the corresponding mark and only recover the failed part.

The subject-specific competences as well as the general-basic competences have specific contents in the subject that are introduced both in the lectures and in the interactive classes. Subsequently, students will develop these competences in the classroom activities, in the theory exam and by carrying out practical work in which they will also work on the transversal competences, especially those related to the ability to use ICT tools (CT3), the understanding of entrepreneurial culture (CT5), the ability to work in a team (CT7) and the valuation of research and innovation (CT8). The specific competences will be assessed both in the practical work that the student carries out during the course and in the theory exam and in the assignments in the theory classes.

For cases of fraudulent performance of exercises or tests, the "Regulations for the evaluation of students' academic performance and revision of grades" will apply. In the specific case of the UDC, article 11, section 4 b) of the UDC Student Disciplinary Regulations applies:

b) Failure grade in the term in which the offence is committed and with respect to the subject in which it is committed: the student will be graded with a "fail" (numerical grade 0) in the corresponding term of the academic year, whether the offence is committed on the first or second occasion. To this end, the student's grade will be modified at the first opportunity, if necessary.

Sources of information		
Basic	- Nikolaus Correll (2020). Introduction to Autonomous Robots. Magellan Scientific	
	- Robin R. Murphy (2019). Introduction to AI Robotics. MIT Press	
	- Maja Mataric (2007). The Robotics Primer. MIT Press	
Complementary		

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Machine Learning I /614544012
Subjects that continue the syllabus
Intelligent Robotics II/614544020
Other comments
-According to the different regulations applicable to university teaching, the gender perspective must be incorporated into this subjectWork will be
done to identify and modify sexist prejudices and attitudes and influence the environment to modify them and promote values of respect and
equalitySituations of gender discrimination should be detected and actions and measures should be proposed to correct them. In order to help

equality.-Situations of gender discrimination should be detected and actions and measures should be proposed to correct them. In order to help achieve a sustainable environment and fulfil the objective of the Green Campus Action Plan, the delivery of the documentary work carried out in this area:- Virtual format or digital support will be requested.- They'll be done on the Virtual Campus without printing them. In case they?re done in paper:-Don't use plastics.- Use double-sided printing.- Use recycled paper.- Avoid printing drafts.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.