

		Teaching Guide			
Identifying Data			2023/24		
Subject (*)	Software Verification and Validation Code			Code	614G01053
Study programme	Grao en Enxeñaría Informática				1
	·	Descriptors			
Cycle	Period	Year		Type Credits	
Graduate	1st four-month period	Fourth		Optional	6
Language	SpanishGalician				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecnolo	oxías da InformaciónCo	mputació	n	
Coordinador	Castro Souto, Laura Milagros E-mail laura.milagros.castro.souto@udc.es		tro.souto@udc.es		
Lecturers	Cabalar Fernandez, Jose Pedro	E-	-mail	pedro.cabalar@udc.es	
	Castro Souto, Laura Milagros			laura.milagros.castro.souto@udc.es	
	Muñiz Castro, Brais			brais.mcastro@udc.es	
	Perez Vega, Gilberto			gilberto.pvega@udc.es	
Web	campusvirtual.udc.es				
General description	This subject is intended to master th	e current solutions in S	Software E	Engineering for the valid	ation and verification of
	software. This includes:				
	- knowledge of functional and non-functional techniques and tools for software validation at all levels (unit, integration,				
	system);				
	- knowledge of techniques and tools for automatic reasoning; and				
	- knowledge of techniques and tools	for formal verification.			

	Study programme competences / results
Code	Study programme competences / results
A28	Capacidade de identificar e analizar problemas, e deseñar, desenvolver, implementar, verificar e documentar solucións sóftware sobre a
	base dun coñecemento adecuado das teorías, modelos e técnicas actuais.
B1	Capacidade de resolución de problemas
B3	Capacidade de análise e síntese
C2	Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e
	para a aprendizaxe ao longo da súa vida.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7	Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8	Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da
	sociedade.

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	con	npetenc	es/
		results	
Ability to identify and analise problems, and to design, develop, implement, validate and document software solutions on the	A28	B1	C2
basis of an deep understanding and knowledge of modern theories, models and techniques.		B3	C3
			C6
			C7
			C8

 Contents

 Topic
 Sub-topic

Part I: Software Validation 1.1 Test specification, design and execution 11.1 Levels and types of tests 11.2. Properties and traceability of requirements 11.2. Properties and traceability of requirements 11.3. Automation 1.2 Test management: planning, assessment, metrics and reviews 11.2 Nutomation Part II: Formal methods and automatic reasoning 11.1 Introduction: natural deduction and calculus of sequences 11.2 Automatic proofs using PVS 11.3 What is a theorem prover, and what is it used for? 11.4 PVS specification language: types, expressions, theories, subtyping 11.5 PVS prover: tactics, recursion, ecuational reasoning Part III: Model checking 11.1 Introduction to modal temporal logic 11.2 Properties specification: deadlocks, safety, liveness, fairness 11.3 How a model checker works 11.3 How a model checking tool 11.4 Introduction to the use of a model checking tool			
I1.1. Levels and types of testsI1.2. Properties and traceability of requirementsI1.3. AutomationI.2 Test management: planning, assessment, metrics and reviewsPart II: Formal methods and automatic reasoningII.1 Introduction: natural deduction and calculus of sequencesII.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool	Part I: Software Validation	I.1 Test specification, design and execution	
I1.2. Properties and traceability of requirementsI1.3. AutomationI.2 Test management: planning, assessment, metrics and reviewsPart II: Formal methods and automatic reasoningII.1 Introduction: natural deduction and calculus of sequencesII.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksII.4 Introduction to the use of a model checking tool		I1.1. Levels and types of tests	
11.3. Automation1.2 Test management: planning, assessment, metrics and reviewsPart II: Formal methods and automatic reasoningII.1 Introduction: natural deduction and calculus of sequencesII.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingII.1 Introduction to modal temporal logicII.2 Properties specification: deadlocks, safety, liveness, fairnessII.3 How a model checker worksII.4 Introduction to the use of a model checking tool		I1.2. Properties and traceability of requirements	
I.2 Test management: planning, assessment, metrics and reviewsPart II: Formal methods and automatic reasoningII.1 Introduction: natural deduction and calculus of sequencesII.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool		I1.3. Automation	
Part II: Formal methods and automatic reasoningII.1 Introduction: natural deduction and calculus of sequencesII.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool		I.2 Test management: planning, assessment, metrics and reviews	
II.2 Automatic proofs using PVSII.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool	Part II: Formal methods and automatic reasoning	II.1 Introduction: natural deduction and calculus of sequences	
II.3 What is a theorem prover, and what is it used for?II.4 PVS specification language: types, expressions, theories, subtypingII.5 PVS prover: tactics, recursion, ecuational reasoningPart III: Model checkingIII.1 Introduction to modal temporal logicIII.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool		II.2 Automatic proofs using PVS	
II.4 PVS specification language: types, expressions, theories, subtyping II.5 PVS prover: tactics, recursion, ecuational reasoning Part III: Model checking III.1 Introduction to modal temporal logic III.2 Properties specification: deadlocks, safety, liveness, fairness III.3 How a model checker works III.4 Introduction to the use of a model checking tool		II.3 What is a theorem prover, and what is it used for?	
II.5 PVS prover: tactics, recursion, ecuational reasoning Part III: Model checking III.1 Introduction to modal temporal logic III.2 Properties specification: deadlocks, safety, liveness, fairness III.3 How a model checker works III.4 Introduction to the use of a model checking tool		II.4 PVS specification language: types, expressions, theories, subtyping	
Part III: Model checking III.1 Introduction to modal temporal logic III.2 Properties specification: deadlocks, safety, liveness, fairness III.3 How a model checker works III.4 Introduction to the use of a model checking tool		II.5 PVS prover: tactics, recursion, ecuational reasoning	
III.2 Properties specification: deadlocks, safety, liveness, fairnessIII.3 How a model checker worksIII.4 Introduction to the use of a model checking tool	Part III: Model checking	III.1 Introduction to modal temporal logic	
III.3 How a model checker works III.4 Introduction to the use of a model checking tool		III.2 Properties specification: deadlocks, safety, liveness, fairness	
III.4 Introduction to the use of a model checking tool		III.3 How a model checker works	
		III.4 Introduction to the use of a model checking tool	

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	B3 C2 C7 C8	21	26.25	47.25
Laboratory practice	A28 B1 B3 C2 C3 C6	21	42	63
Objective test	B1 B3 C6	3	31.5	34.5
Personalized attention		5.25	0	5.25
(*)The information in the planning table is for guide	noo only and doop not	take into account the l	eterogeneity of the ctu	Idanta

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Master class where the theoretical contents of the study programme are presented.
keynote speech	
Laboratory practice	Hands-on work sessions in the lab.
Objective test	Written test.

	Personalized attention
Methodologies	Description
Objective test	Questions/answers about the theoretical/practical aspects of the subjects, during the corresponding office hours of each
Guest lecture /	teacher.
keynote speech	
Laboratory practice	Part-time students should be able to follow this subject without issues, given that attendance is not mandatory nor awarded
	qualification. However, part-time students are responsible for keeping up-to-date with the materials posted on the Moodle
	platform, as well as the assignments to be handed in. When the assignments are to be handed in by means other than
	telematics, they will be set up between part-time students and teachers to the best both their schedules allow.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Objective test	B1 B3 C6	Written test, up to 4 points in the final score. A minimum of 2 points is required to	40
		pass.	

Laboratory practice

A28 B1 B3 C2 C3 C6 Hand in and presentation of hands-on student assignments, up to 6 points in the final score (2 points per content topic). These are not compulsory to pass.

60

Assessment comments

In the first opportunity, students that do not reach the minimum in the objective test, will receive the mark they obtain in that objective test.

In the second opportunity, the objective test will have a weight of 80% for those students which continuous and lab evaluation sums up less than 1 point, in order to guarantee their right to pass the subject.

In compliance with the academic rules at UDC that apply to part-time students, physical presence in the classroom/laboratory will not be regarded as a qualification element. That is to say, students may officially apply to be dismissed from attending lectures and laboratory practices. All in all, part-time students will still need to comply with deadlines established for supervised projects and laboratory projects.

Likewise, as stated in the different regulations applicable to university teaching, the incorporation of the gender perspective in this subject will be enforced by using non-sexist language and encouraging the intervention, during the master sessions, of women and men in a balanced way. We will work to identify and modify prejudices and sexist attitudes, and we will influence the environment to modify them and promote values of respect and equality. Finally, if situations of gender-based discrimination are detected, actions and measures will be proposed to correct them.

	Sources of information	
Basic - Maurício Aniche (2022). Effective software testing. Manning		
	- Charity Majors, Liz Fong-Jones, George Miranda (2022). Observability Engineering. O'Reilly Media, Inc.	
	- Brian Okken (2022). Python testing with pytest. The Pragmetic Programmers	
	- Gayathri Mohan (2022). Full Stack Testing. O'Reilly Media, Inc.	
	- Fred Hébert (2019). Property-based testing with PropEr, Erlang, and Elixir : find bugs before your users do. The	
	Pragmatic Bookshelf	
	- Mordechai Ben-Ari (2012). Mathematical Logic for Computer Science. Springer	
	- Crispin Lisa, Gregory Janet (2008). Agile Testing: A Practical Guide for Testers and Agile Teams. Addison-Wesley	
	- Gerard J. Holzmann (2003). The SPIN model checker: primer and reference manual. Addison-Wesley	
	- Kent Beck (2002). Test Driven Development (By Example). Addison-Wesley	
	- Mordechai Ben-Ari (2001). Mathematical Logic for Computer Science. Springer	
	- Zohar Manna and Amir Pnueli (1995). The Temporal Logic of Reactive and Concurrent Systems. Safety. Springer	
	- Zohar Manna and Amir Pnueli (1991). The Temporal Logic of Reactive and Concurrent Systems. Specification.	
	Springer	
Complementary		

Recommendations
Subjects that it is recommended to have taken before
Software Design/614G01015
Concurrency and Parallelism/614G01018
Software Process/614G01019
Software Architecture/614G01221
Requirements Engineering/614G01222
Quality Assurance/614G01223
Subjects that are recommended to be taken simultaneously
Knowledge Representation and Automatic Reasoning/614G01036
Theoretical Computer Science/614G01039
Development Methodologies/614G01051
Subjects that continue the syllabus
Software Development Projects/614G01226
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.