

		Teaching Guide		
	Identifying I	Data		2024/25
Subject (*)	Instrumentation and Processing for I	Biomedical Applications	Code	614535012
Study programme	Máster Universitario en Visión por C	computador	I	I
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 1st four-month period	First	Obligatory	6
Language	English	· · · · · · · · · · · · · · · · · · ·		I
Teaching method	Face-to-face			
Prerequisites				
Department	Ciencias da Computación e Tecnolo	oxías da Información		
Coordinador	Novo Bujan, Jorge	E-mail	j.novo@udc.es	
Lecturers	De Moura Ramos, Jose Joaquim	E-mail	joaquim.demou	ira@udc.es
	Novo Bujan, Jorge		j.novo@udc.es	
Web	https://www.imcv.eu/guide/2024-2025/ipbma/			
General description				

	Study programme competences / results		
Code	Study programme competences / results		
A1	CE1 - To know and apply the concepts, methodologies and technologies of image processing		
A3	CE3 - To know and apply the concepts, methodologies and technologies of image and video analysis		
A7	CE7 - To understand and apply the fundamentals of medical image acquisition, processing and analysis		
B2	CB7 - That students are able to apply their acquired knowledge and problem-solving skills in new or unfamiliar environments within		
	broader (or multidisciplinary) contexts related to their area of study		
B3	CB8 - That students are able to integrate knowledge and deal with the complexity of making judgements based on information that is		
	incomplete or limited, including reflections on social and ethical responsibilities linked to the application of their knowledge and judgements		
B5	CB10 - That students possess the learning skills to enable them to continue studying in a largely self-directed or autonomous manner		
B8	CG3 - Ability to develop computer vision systems depending on existing needs and apply the most appropriate technological tools		
B9	CG4 - Ability to critically analyze and rigorously evaluate technologies and methodology		
B12	CG7 - Ability to learn autonomously for specialization in one or more fields of study		
C4	CT4 - Ability to understand the meaning and application of the gender perspective in different areas of knowledge and professional		
	practice with the aim of achieving a more just and equal society		

Learning outcomes			
Learning outcomes	Study programme		
	con	npetenc	es/
		results	
Understand the basic concepts related to different biomedical imaging modalities and the physical factors that influence their	AC1	BC2	CC4
properties.	AC3	BC3	
	AC7	BC5	
		BC8	
		BC9	
		BC12	
To know the statistical techniques currently used for the validation of biomedical applications.	AC1	BC2	CC4
	AC3	BC3	
	AC7	BC5	
		BC8	
		BC9	
		BC12	

Ability to apply different processing and analysis techniques in biomedical imaging applications.	AC1	BC2	CC4
	AC3	BC3	
	AC7	BC5	
		BC8	
		BC9	
		BC12	
Knowledge of image registration techniques and their applications in biomedical imaging.	AC1	BC2	CC4
	AC3	BC3	
	AC7	BC5	
		BC8	
		BC9	
		BC12	

	Contents
Торіс	Sub-topic
Basic concepts of biomedical imaging.	
Biomedical imaging modalities.	
Validation techniques in biomedical applications.	
Biomedical image processing and analysis.	
Registration of biomedical images.	
Biomedical imaging applications.	

Planning				
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Laboratory practice	B2 B3 B8 B12	15	51.84	66.84
Supervised projects	B2 B3 B8 B12	10	34.56	44.56
Guest lecture / keynote speech	A1 A3 A7 B5 B9 C4	14	21.6	35.6
Personalized attention		3	0	3
(*)The information in the planning table is for guidance only and does not take into account the beterogeneity of the students				

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies		
Methodologies	Description	
Laboratory practice	Practical exercises in computer classrooms, learning based on the resolution of practical cases, combining work and autonomous learning with group work for cooperative learning	
Supervised projects	Presentations of project-oriented works	
Guest lecture /	Participatory Master Lessons	
keynote speech		

Personalized attention	
Methodologies	Description
Laboratory practice	Attention to the challenges posed to students both in the practices and in the work.
Supervised projects	

	Assessment		
Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	B2 B3 B8 B12	Development practices of applied cases	50
Guest lecture /	A1 A3 A7 B5 B9 C4	Demonstration of application of knowledge taught in class	20
keynote speech			

Supervised projects

B2 B3 B8 B12

Practical projects related to the subject

30

Assessment comments

	Sources of information
Basic	- Bushberg JT, Seibert JA, Leidholdt EM, Boone JM: ?The Essential Physics of Medical Imaging?. Lippincott Williams
	& Wilkins. 2002 Fish P: ?Physics and Instrumentation of Diagnostic Medical Ultrasound?. John Wiley & Sons. 1999
	Sprawls Perry: "Magnetic Resonance Imaging. Principles, Methods and Techniques". Medical Physics Publishing.
	2000. p { margin-bottom: 0.25cm; direction: ltr; line-height: 115%; text-align: left; orphans: 2; widows: 2; background:
	transparent }- Bushberg JT, Seibert JA, Leidholdt EM, Boone JM: ?The Essential Physics of Medical Imaging?.
	Lippincott Williams & Wilkins. 2002 Fish P: ?Physics and Instrumentation of Diagnostic Medical Ultrasound?. John
	Wiley & Sons. 1999 Sprawls Perry: "Magnetic Resonance Imaging. Principles, Methods and Techniques". Medical
	Physics Publishing. 2000. p { margin-bottom: 0.25cm; direction: ltr; line-height: 115%; text-align: left; orphans: 2;
	widows: 2; background: transparent }
Complementary	

 Recommendations

 Subjects that it is recommended to have taken before

 Subjects that are recommended to be taken simultaneously

 Fundamentals of Machine Learning for Computer Vision /614535007

 Fundamentals of Image Processing and Analysis /614535001

 Subjects that continue the syllabus

 Biomedical Image Analysis/614535013

 Other comments

 - As reflected in the various regulations applicable to university teaching, the gender perspective should be incorporated into this subject (non-sexist language will be used, bibliography from authors of both sexes will be used, the intervention of male and female students in class will be

encouraged...).- Work will be done to identify and modify sexist prejudices and attitudes, and we will influence the environment to change them and promote values of respect and equality.- Situations of discrimination on the grounds of gender should be detected and actions and measures should be proposed to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.