

Teaching Guide				
Identifying Data			2024/25	
Subject (*)	Error Correction Codes		Code	614551013
Study programme	Máster Universitario en Ciencia e Tecnol	oxías de Información Cu	iántica	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 2nd four-month period	First	Optional	3
Language	Spanish			
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría de Computadores			
Coordinador		E-mail		
Lecturers	Castedo Ribas, Luis	E-mail	ail luis.castedo@udc.es	
Web	n9.cl/bosw5			
General description	SHARED UVIGO AND UDC			
	VISIT WEB LINK			
	This course provides an introduction to q	uantum error correction,	which is a fundamental as	pect of quantum computation
	and quantum information theory. The cou	urse aims to explore vari	ous error correction codes	and techniques that allow
	preserving and manipulating quantum information in the presence of noise and errors.			

	Study programme competences / results
Code	Study programme competences / results
A13	CON_13 Have knowledge of the physical and technical limitations of implementing quantum information processing systems: noise,
	decoherence, etc., as well as the mitigation or correction strategies that are proposed.
B13	HD24 Actively participate in face-to-face activities in the classroom.
C1	C1. Adequate oral and written expression in the official languages.
C2	C2. Mastering oral and written expression in a foreign language.
C3	C3. Using ICT in working contexts and lifelong learning.

Learning outcomes				
Learning outcomes			Study programme	
			competences /	
		results		
Ability to understand the construction, analysis and applications of quantum error control codes in communication systems and	AJ13	BJ13	CJ1	
quantum computers.			CJ2	
Error control codes in communication systems and quantum computers. Knowledge of the main specific specific codes.			CJ3	

Contents		
Торіс	Sub-topic	
Quantum errors	- Overview of quantum errors and their sources	
	- Decoherence and noise in open quantum systems	
	- Types of errors and error channel models	
	- Digitization of quantum noise. Error operators	
Fundamentals of quantum error correction	- From Classical to Quantum Error Correction	
error correction	- The three-qubit error correction code	
	- The nine-qubit Shor code	
	- Conditions of quantum error correction	
	- The quantum Hamming limit	

Construction of quantum codes	- Classical linear block codes
	- Calderbank-Shor-Steane Codes (CSS)
Stabilizer codes	- The stabilizer formalism
	- Measurement in the stabilizer formalism
	- Constructions of stabilizer codes
	- Quantum circuits for coding, decoding and correction
Topological stabilizing codes	- The Z2 chain complex
	- Surface codes on a torus: toric codes
	- Flat surface codes
	- Topological quantum error correction
Fault-tolerant quantum computing	- Fault tolerance in quantum computing
	- Fault-tolerant error correction
	- Fault-tolerant coded operations

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Problem solving	B13	5	27	32
Oral presentation	C1 C2 C3	2	0	2
Guest lecture / keynote speech	A13	18	23	41
Personalized attention		0	0	0
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.				

Methodologies		
Methodologies	Description	
Problem solving	Typical quantum error code design and analysis problems will be solved, in order to learn how to use the methods seen in the	
	lectures.	
Oral presentation	An oral presentation of evaluation work will be made	
Guest lecture /	The main elements of quantum error codes, their applications and limitations will be presented.	
keynote speech	limitations.	

	Personalized attention
Methodologies	Description
Guest lecture /	Consultations will be handled asynchronously via Microsoft Teams chat. Support will be provided through face-to-face
keynote speech	meetings or online meetings via Microsoft Teams.
Problem solving	
Oral presentation	

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Problem solving	B13	Resolution of exercises in an autonomous and individual way, delivery in writing. Two	60
		sets with a value of 30% each.	
Oral presentation	C1 C2 C3	Submission of a roll-up work by the student	40

Assessment comments

Sources of information

Basic	 M. A. Nielsen, I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press Ivan B. Djordevic (2021). Quantum Information Processing, Quantum Computing. and Quantum Error Correction. Academic Press
Complementary	 Giuliano Gadioli La Guardia (2020). Quantum Error Correction. Springer Frank Gaitan (2013). Quantum Error Correction and Fault Tolerant Quantum Computing. Taylor & amp; Francis D. A. Lidar, T. A. Brun (2013). Quantum Error Correction. Cambridge University Press

Recommendations
Subjects that it is recommended to have taken before
Fundamentals of Quantum Information/614551003
Fundamentals of Quantum Communications/614551005
Introduction to Quantum Computing/614551004
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.