

		Teachin	ng Guide			
	Identifying	g Data			2024/25	
Subject (*)	HPC Tools Code		614973105			
Study programme	Mestrado Universitario en Comput	tación de Altas	s Prestacións / High F	Performance Compu	iting (Mod. Virtual)	
		Desc	riptors			
Cycle	Period	Ye	ear	Туре	Credits	
Official Master's Degre	ee 1st four-month period	Fi	rst	Optional	6	
Language	English		I			
Teaching method	Non-attendance					
Prerequisites						
Department	Departamento profesorado máster	rEnxeñaría de	Computadores			
Coordinador	Padron Gonzalez, Emilio Jose		E-mail	emilio.padron@	udc.es	
Lecturers	Andrade Canosa, Diego		E-mail	E-mail diego.andrade@udc.es		
	Padron Gonzalez, Emilio Jose	adron Gonzalez, Emilio Jose		emilio.padron@udc.es		
Web	aula.cesga.es		1			
General description	The objective of this course is to g	et the student	s familiar with the mo	st common types of	application that are candidates to	
	use HPC, besides being introduced to the main tools and implementations existing for them, understanding the challenges					
	to be addressed for their parallelization and performance tuning. All this will allow the students to obtain a general					
	knowledge about the HPC field and its different applications and use cases.					
	Furthermore, the students will lear	rn what tools c	an be used to carry o	ut the performance	characterization and	
	benchmarking tasks in HPC environments, and how these tools can be leveraged to drive the parallelization and					
	performance tuning of an application on a specific platform. This will allow the students to be able to analyze the expected					
performance on that system, identifying the different hot spots and focussing the		cussing the optimiza	ation efforts on them.			
	Finally, the students will learn diffe	erent technolog	gical alternatives for a	fast and efficient d	eployment of HPC applications.	
	This will allow them to be able to e	easily and effe	ctively deliver and exe	ecute HPC applicati	ons in different environments.	

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
A3	CE3 - Know the high performance computing basic concepts
A4	CE4 - Deepen in the knowledge of different programming tools and programming languages in the field of the high performance
	computing
A5	CE5 - Analyze, design and implement efficient parallel algorithms and applications
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B3	CB8 - The students have to be able to integrate knowledge and face the complexity to make judgments from information, despite being
	partial and limited, includes reflexions about the social and ethical responsabilities linked to the application of their judgements and
	knowledge
B4	CB9 - The students have to be able to communicate their conclusions, their knowledge and the reasons that hold them to specialized and
	non specialized audience in a clear and unambiguous manner
B6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B8	CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and
	advanced technologies in the field
B9	CG4 - Be able to plan and do research, development and innovation tasks in high performance computing related environments
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning

C4	CT4 - Value the importance of research, innovation and the technological development in the socioecono	mical and cultural	advance	of the
	society			
	Learning outcomes			
	Learning outcomes	Stud	y progra	amme
		con	npetend	;es /
			results	
Students	will know the most common types of applications in which HPC techniques are usually applied.	AJ1	BJ1	CJ1
		AJ2	BJ6	
Students	will learn to use tools to characterize and represent the performance of applications.	AJ3	BJ3	CJ4
		AJ4	BJ9	
Students	will learn to use tools to compile, generate and deploy software in HPC environments.	AJ3	BJ1	CJ1
		AJ5	BJ4	
			BJ8	

Contents		
Торіс	Sub-topic	
A survey of the main application types in HPC environments	For each type we will see:	
	1. Problem: formal description.	
	2. Parallelization and performance tuning challenges.	
	3. Existing approaches.	
Tools for software compilation and optimization in HPC	1. Code compilation, optimization and generation.	
environments	2. Code optimization with a compiler.	
	3. Automatic parallelization and vectorization.	
	4. Tools for software building automation.	
Tools to measure, characterize and represent the	1. Usage of performance characterization and benchmarking tools,	
performance of HPC applications	such as software monitoring and hardware counters.	
	2. Hot spot detection to drive the optimization process.	
	3. Application of performance models to this process.	
	4. Tools for application performance representation	
Tools for the deployment of AI applications in HPC	1. Training and deployment of Deep Learning models in HPC	
environments	environments.	
	2. Use of containers to ease the deployment of HPC applications.	

	Plannin	ıg		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Workbook	A3 B1 C4	0	23	23
Laboratory practice	A1 A2 A4 A5 C1	4	66	70
Supervised projects	B3 B4 B6 B8 B9	0	54	54
Mixed objective/subjective test	B4 B6	2	0	2
Personalized attention		1	0	1
(*)The information in the planning table is for	guidance only and does not	t take into account the l	heterogeneity of the stud	dents.

	Methodologies		
Methodologies	Description		
Workbook	Reading educational material, watching videos and use multimedia resources. Instruction guided by teaching materials,		
	especially designed for an autonomous and asynchronous learning.		
Laboratory practice	Asynchronous and autonomous lab sessions, monitored by teachers, allowing students to become familiar from a practical		
	standpoint with the issues discussed in the workbook.		

Supervised projects	Guided task fulfillment: students apply the acquired knowledge to solve different problems autonomously.	
Mixed	Written test/exam to show that the students have acquired the Degree's competences trained in this course by answering	
objective/subjective	theoretical questions and solving exercises.	
test		

Personalized attention			
Description			
ce Personalized attention is guaranteed during the development of the laboratory practices and supervised projects, being			
essential to guide students in the fulfillment of their tasks. This personalized attention is also useful to validate and evaluate			
the work carried out throughout the different development stages, until finished.			
Furthermore, it is recommended for students to leverage the teacher's office hours as a complementary assistance tool.			

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Mixed	B4 B6	Written test/exam to show that the students have acquired the Degree's competences	30
objective/subjective		trained in this course by answering theoretical questions and solving exercises.	
test			
Supervised projects	B3 B4 B6 B8 B9	Guided task fulfillment: students apply the acquired knowledge to solve different	70
		problems autonomously.	

Assessment comments
All aspects related to "academic exemption", "study dedication",
"continuation", and "academic fraud" shall be governed by the current academic regulations of the UDC."

	Sources of information
Basic	[1] Computer Architecture: A Quantitative Approach (5th or 6th Ed.). John L. Hennessy, David A. Patterson. Morgan
	Kaufmann. ISBN 978-0123838728 (5th Ed. 2011) 978-0128119051 (6th Ed. 2017)[2] Performance Tuning of Scientific
	Applications. David H. Bailey, Robert F. Lucas, Samuel Williams. CRC Press. ISBN 978-1439815694[1] Computer
	Architecture: A Quantitative Approach (5th or 6th Ed.). John L. Hennessy, David A. Patterson. Morgan Kaufmann.
	ISBN 978-0123838728 (5th Ed. 2011) 978-0128119051 (6th Ed. 2017)[2] Performance Tuning of Scientific
	Applications. David H. Bailey, Robert F. Lucas, Samuel Williams. CRC Press. ISBN 978-1439815694
Complementary	[3] Intel® C++ Compiler Developer Guide and Reference
	https://software.intel.com/cpp-compiler-developer-guide-and-reference[4] A Guide to Vectorization with Intel® C++
	Compilers https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf[5] Intel®
	VTune? Amplifier Help https://software.intel.com/en-us/vtune-amplifier-help[6] Free Software Foundation, Inc.: Using
	the GNU Compiler Collection (GCC). https://gcc.gnu.org/onlinedocs

	Recommendations
	Subjects that it is recommended to have taken before
Parallel Programming/614473102	
	Subjects that are recommended to be taken simultaneously
	Subjects that continue the syllabus
	Other comments

Because of the strong interrelation between the lectures and the lab sessions, and the progressive presentation of concepts very related each other in the lectures, it is recommended to dedicate enough time to a daily study or review. This course will leverage online communication tools in quite an intensive way: videoconference, e-mail, chat, etc. According to the various applicable regulations for university teaching, this course incorporates a gender perspective (non-sexist language, promoting the participation of male and female students in class...).Efforts will be made to identify and modify sexist, racist, or xenophobic prejudices and attitudes, and actions and measures will be proposed to correct them.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.