

		Teachin	ng Guide				
	Identifying Data			2024/25			
Subject (*)	Electronics Technology Code		Code	614G01005			
Study programme	Grao en Enxeñaría Informática						
		Desc	riptors				
Cycle	Period	Ye	ear	Туре	Credits		
Graduate	2nd four-month period	Fi	rst	Basic training	6		
Language	SpanishGalicianEnglish						
Teaching method	Face-to-face						
Prerequisites							
Department	Enxeñaría de Computadores						
Coordinador	García Naya, José Antonio E-mail jose.garcia.naya@udc.es		⊉udc.es				
Lecturers	Bregains Rodriguez, Julio Claud	io	E-mail	julio.bregains@uc	lc.es		
	Castro Castro, Paula Maria			paula.castro@ude	c.es		
	García Naya, José Antonio			jose.garcia.naya@	a.naya@udc.es		
	Gonzalez Lopez, Miguel			miguel.gonzalez.l	el.gonzalez.lopez@udc.es		
	Iglesia Iglesias, Daniel Ismael			daniel.iglesia@udc.es			
	Lamas Seco, Jose Juan			jose.juan.lamas.seco@udc.es			
	Rodas González, Javier			javier.rodas@udc	javier.rodas@udc.es		
Web	estudos.udc.es/es/subject/614G	01V01/614G01	005/				
General description	The subject of Electronic Techno	ology in the Deg	ree in Computer E	Engineering is fundament	al both for the degree and for		
	the professional career in computer engineering. In this course, students will explore the physical principles of						
	semiconductors, logic circuits, and the technology behind electronic devices. This knowledge is essential for understanding						
	and designing electronic circuits, which is crucial in the creation of all kinds of computer systems. The importance of this						
	subject is reflected in its application in cutting-edge areas such as the Internet of Things (IoT), mobile devices,						
	communications, and cybersecurity, to name a few. Graduates with a solid foundation in electronic technology will be bette				ectronic technology will be better		
	prepared to innovate and develo	p new technolo	gical solutions, ad	dressing current and futu	re challenges in the industry.		
	This subject not only provides a	solid theoretical	I foundation but al	so offers opportunities to	apply this knowledge in practical		
	projects, preparing students to p	lay a crucial role	e in technological	advancement.			

	Study programme competences / results
Code	Study programme competences / results
A2	Comprensión e dominio dos conceptos básicos de campos e ondas, e electromagnetismo, teoría de circuítos eléctricos, circuítos
	electrónicos, principio físico dos semicondutores e familias lóxicas, dispositivos electrónicos e fotónicos e a súa aplicación para a
	resolución de problemas propios da enxeñaría.
B1	Capacidade de resolución de problemas
B3	Capacidade de análise e síntese
C2	Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning outcomes			
Learning outcomes	Study	/ progra	mme
	con	npetenc	es/
		results	
To learn fundamental physical concepts governing computer functioning: electrical and electronic circuits.	A2	B1	C2
		B3	C6
Practical applications of the solid-state devices and analog and digital integrated circuits.	A2	B1	C2
		B3	C6

Contents

Торіс	Sub-topic
Chapter 1. Electric circuits	1.1 Basic concepts of electricity. Ohm's law.
	1.2 Voltage and current sources. Power.
	1.3 Electrical circuits. Kirchhoff's laws.
	1.4 Circuits theorems.
Chapter 2. Charging and discharging capacitors. Amplifiers	2.1 Waveforms. Fundamental parameters.
	2.2 Behavior of the capacitor parameters with respect to time.
	2.3 R-C circuits in the time domain.
	2.4 R-C Integrator and differentiator circuits.
	2.5 Foundations of amplifiers
Chapter 3. Semiconductor diodes	3.1 Physical principles of semiconductor devices.
	3.2 p-n junction.
	3.3 Diode V-I characteristic. Linear models.
	3.4 Avalanche diodes. LED. Photodiodes.
Chapter 4. Transistors	4.1 MOSFET unipolar transistors.
	4.2 V-I characteristic in common-source mode.
	4.3 Operational regions and linear equivalent models.
	4.4 MOSFET transistors in amplifying and switching modes.
Chapter 5. Logic circuits	5.1 Introduction. General properties of digital circuits.
	5.2 The CMOS inverter.
	5.3 CMOS gates.
	5.4 CMOS families.

Plannir	ng		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
A2 B1 B3 C2 C6	30	42	72
A2 B1 B3 C2 C6	20	30	50
A2 B1 B3 C2 C6	10	14	24
A2 B1 B3 C2 C6	3	0	3
	1	0	1
	Competencies / ResultsA2 B1 B3 C2 C6A2 B1 B3 C2 C6A2 B1 B3 C2 C6A2 B1 B3 C2 C6	Results (in-person & virtual) A2 B1 B3 C2 C6 30 A2 B1 B3 C2 C6 20 A2 B1 B3 C2 C6 10	Competencies / ResultsTeaching hours (in-person & virtual)Student?s personal work hoursA2 B1 B3 C2 C63042A2 B1 B3 C2 C62030A2 B1 B3 C2 C61014A2 B1 B3 C2 C630

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	In the lecture sessions, theoretical content will be presented through oral presentations supported by audiovisual media and a
keynote speech	blackboard. Additionally, numerous examples will be used, and practical problems will be solved. This methodology includes
	introducing questions directed at students to promote learning and knowledge construction.
Laboratory practice	In the laboratory practices, students will engage in practical activities focused on circuit analysis. They will use electronic
	boards, instrumentation equipment, and measurement and circuit simulation software. This methodology allows students to
	apply theoretical concepts in a practical environment, facilitating deeper learning and a comprehensive understanding of
	electronic systems.
Problem solving	Students will actively participate in solving problems specific to electronic technology, which will be related to the practical
	cases addressed in the laboratory. These problems will focus on the analysis of electrical and electronic circuits, as well as
	understanding the operation of basic electronic circuits, including logic gates. Additionally, students will tackle exercises
	designed to reinforce their understanding of fundamental concepts.
Mixed	The mixed exam will be a final evaluative activity in which students must demonstrate their knowledge through a combination
objective/subjective	of theoretical questions and problem-solving. This written exam will allow for a comprehensive and integrated treatment of the
test	knowledge acquired throughout the course.

	Personalized attention
Methodologies	Description
Guest lecture /	Personalized attention will be applied to the three teaching methodologies: lecture sessions, laboratory practices, and problem
keynote speech	solving. This attention will involve guiding and mentoring the learning process in various activities, aiming to help students
Laboratory practice	significantly understand the information, integrate it into their knowledge structure, and engage actively. Additionally, it seeks
Problem solving	to motivate students and encourage their active participation in the teaching-learning process.

		Assessment	
Methodologies	Methodologies Competencies / Description		Qualification
	Results		
Laboratory practice	A2 B1 B3 C2 C6	Continuous assessment, with feedback from the teaching staff, of the work carried out	30
		by students in laboratory practices.	
Problem solving	A2 B1 B3 C2 C6	Continuous assessment, with feedback from the teaching staff, of the work carried out	20
		by students in the problem-solving sessions.	
Mixed	A2 B1 B3 C2 C6	The mixed exam will consist of providing written answers to a combination of	50
objective/subjective		theoretical questions and problem-solving tasks. It will be held on the dates set in the	
test		faculty's exam schedule.	

Assessment comments

First opportunity

Students who do not take the mixed exam will be graded as "not presented."

The total grade (0 to 10 points) is obtained from the sum of the laboratory practices (0 to 3 points), problem-solving (0 to 2 points), and the mixed exam (0 to 5 points).

To pass the subject, the following two conditions must be met:

1) The total grade is greater than or equal to 50% (5 points of the total grade).

2) The grade of the mixed exam is greater than or equal to 15% (3 points out of 10 of the mixed exam grade). Otherwise, the total grade will be halved. Second opportunity

Only the mixed exam will be assessed on the date indicated in the faculty's exam schedule. The conditions for grading as "not presented" and for passing the course are the same as in the first opportunity.

Early opportunity

Same conditions as in the case of the second opportunity.

All aspects related to academic exemption, study dedication, retention, and academic fraud will be governed in accordance with the current academic regulations of the UDC.

	Sources of information
Basic	- ()
	Nahvi, Mahmood, and Joseph A. Edminister. Circuitos eléctricos y electrónicos. 4a ed., McGraw-Hill, 2005.
	[URL]Hambley, Allan R. Electronica. 2a ed., Prentice-Hall, 2008. [URL]

Complementary	Brégains, Julio Claudio, and Paula María Castro Castro. Electricidad básica: problemas resueltos. Starbook, 2012.
	[URL]Brégains, Julio Claudio, and Paula María Castro Castro. Electrónica básica: problemas resueltos. Starbook,
	2013. [URL]Boylestad, Robert L. Introducción al análisis de circuitos. 13a ed., Pearson, 2017. [URL]Scott, Donald E.
	Introducción al análisis de circuitos: un enfoque sistemático. McGraw-Hill, 1988. [URL]Sedra, Adel S., and Kenneth C.
	Smith. Circuitos microelectrónicos. 5a ed., McGraw Hill, 2006. [URL]Malvino, Albert Paul, and David J. Bates.
	Principios de electrónica. 7a ed., McGraw-Hill, 2007. [URL]Boylestad, Robert L., and Louis Nashelsky. Electrónica:
	teoría de circuitos y dispositivos electrónicos. 10a ed., Prentice Hall, 2009. [URL] Boylestad, Robert L., et al.
	Electrónica: teoría de circuitos y dispositivos electrónicos. 11a ed., Pearson Educación, 2018. [URL]Malik, Norbert R.
	Circuitos electrónicos: análisis, simulación y diseño. Prentice Hall, 1996. [URL]Rashid, Muhammad H. Circuitos
	microelectrónicos: análisis y diseño. Paraninfo, 2002. [URL]

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.