
Teaching Guide

Identifying Data 2024/25

Subject (*) Software Design Code 614G01015

Study programme Grao en Enxeñaría Informática

Descriptors

Cycle Period Year Type Credits

Graduate 1st four-month period Second Obligatory 6

Language SpanishEnglish

Teaching method Face-to-face

Prerequisites

Department Ciencias da Computación e Tecnoloxías da InformaciónComputación

Coordinador Mosqueira Rey, Eduardo E-mail eduardo.mosqueira@udc.es

Lecturers Alonso Ríos, David

Cabado Lousa, Bruno

Magaz Romero, Samuel

Mosqueira Rey, Eduardo

Paz López, Alejandro

Paz Ruza, Jorge

Pérez Sánchez, Beatriz

Perez-Campoamor Manzaneque, Antonio

E-mail david.alonso@udc.es

bruno.cabado@udc.es

s.magazr@udc.es

eduardo.mosqueira@udc.es

alejandro.paz.lopez@udc.es

j.ruza@udc.es

beatriz.perezs@udc.es

a.perez-campoamor@udc.es

Web

General description Software Design is a key phase in software life cycle that provides the link between the requirements of a system and its

implementation. The most common software design today is based on object-oriented techniques, which consists of

developing a program based on objects that interchange messages.

This subject will introduce students to the basic elements and properties of object orientation using an object-oriented

language like Java. The students will also learn how to represent design artifacts using a modeling language such as the

Unified Modeling Language (UML).

Finally, the basic principles that represent a good design will be presented and we will learn to identify those typical design

problems and their most common solutions represented as design patterns.

Study programme competences / results

Code Study programme competences / results

A7 Capacidade para deseñar, desenvolver, seleccionar e avaliar aplicacións e sistemas informáticos que aseguren a súa fiabilidade,

seguranza e calidade, conforme a principios éticos e á lexislación e normativa vixente.

A13 Coñecemento, deseño e utilización de forma eficiente dos tipos e estruturas de datos máis adecuados á resolución dun problema.

A14 Capacidade para analizar, deseñar, construír e manter aplicacións de forma robusta, segura e eficiente, elixindo o paradigma e as

linguaxes de programación máis adecuados.

B1 Capacidade de resolución de problemas

B2 Traballo en equipo

B3 Capacidade de análise e síntese

B4 Capacidade para organizar e planificar

C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e

para a aprendizaxe ao longo da súa vida.

C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning outcomes

1/5

Learning outcomes Study programme

competences /

results

Identify software design as one of the phases of software lifecycle A7

A13

A14

B3

B4

C3

Know the principles and basic properties of object orientation A7

A13

A14

B1

B2

B3

B4

C3

C6

Capture software design using the artifacts of a modeling language like UML A7

A13

A14

B1

B2

B3

B4

C3

C6

Know the basic principles that represent a good software design A7

A13

A14

B1

B2

B3

B4

C3

C6

Identify typical design problems and their most common solutions A7

A13

A14

B1

B2

B3

B4

C3

C6

Use a design as a guide for software implementation A7

A13

A14

B1

B2

B3

B4

C3

C6

Learn an object-oriented language and related aspects (IDE, tests, repositories, etc.) A13 B1

B2

B3

B4

C3

C6

Contents

Topic Sub-topic

1. Introduction ? Software design

? Object-oriented analysis and design

2. Basic Elements of Object Orientation ? Classes and objects

? Object identity

? Object state

? Object behavior

3. Basic Characteristics of Object Orientation ? Abstraction and encapsulation

? Modularity

? Hierarchy

? Polimorphism

? Typing

? Dynamic binding

4. Unified Modeling Language (UML) ? Introduction

? Basic elements of UML

? Static design: Class diagrams

? Dynamic design: Interaction diagrams

? Other diagrams

2/5

5. Design Principles ? Quality in design

? SOLID principles

? Types of inheritance

6. Design Patterns ? Introduction to design patterns

? Elementary patterns

? Designs adaptable to changes

? Loosely coupled designs

? Patterns and collections of objects

? Other patterns and principles

Practice ? Introduction to Java

? Pair programming

? Software tests

? Source code repositories

Planning

Methodologies / tests Competencies /

Results

Teaching hours

(in-person & virtual)

Student?s personal

work hours

Total hours

Guest lecture / keynote speech A7 A13 A14 B1 B3 C6 30 45 75

Laboratory practice A7 A13 A14 B1 B2 B3

B4 C3 C6

20 30 50

Seminar A7 A13 A14 B1 B2 B3

B4 C3 C6

10 10 20

Objective test A7 A13 A14 B1 B3 C6 3 0 3

Personalized attention 2 0 2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

Methodologies Description

Guest lecture /

keynote speech

Lectures explaining theoretical concepts using different resources: blackboard, projection of digital slides, class notes in

electronic format and other resources provided by the teachers in the Virtual Campus of the UDC.

Laboratory practice Laboratory activities based on the knowledge that students are acquiring in lectures. Students will develop this activities

preferably in groups. We will use a modeling tool to build the design artifacts and an object-oriented language (Java) to

implement that artifacts.

Seminar Seminars in which activities mainly related to practical knowledge will be carried out.

Objective test Written test in which the knowledge acquired by students is assessed. Each student must apply their knowledge both in

theoretical and practical level.

Personalized attention

Methodologies Description

Laboratory practice

Seminar

Personalized attention to students includes not only tutorials (either virtual or in-person) to discuss questions, but also the

following actions:

- Monitoring the work of laboratory practices proposed by the teacher.

- Evaluation of the results obtained in practice and seminars.

- Personalized meetings to answer questions about the contents of the subject.

3/5

Assessment

Methodologies Competencies /

Results

Description Qualification

Laboratory practice A7 A13 A14 B1 B2 B3

B4 C3 C6

Exercises based on Java programming, object-oriented design, testing design, the

modeling language UML and the use of design principles and design patterns.

Plagiarism in an exercise means a grade of zero in the entire practice, both for the

original and for the copy.

It is mandatory to obtain a minimum grade of 4 in laboratory practice to pass the

subject.

33

Seminar A7 A13 A14 B1 B2 B3

B4 C3 C6

Seminars are practical sessions led by the teacher in which useful aspects related to

the assignments are discussed.

The seminars do not include the submission of assignments by the students, so it is

not an evaluable activity.

0

Objective test A7 A13 A14 B1 B3 C6 Written test conducted at the end of the semester with theoretical and practical

content.

It is mandatory to obtain a minimum grade of 4 in the objective test to pass the

subject.

67

Assessment comments

Failure to reach the minimum grade of 4 in the objective test or the laboratory practice in any of the opportunities will mean that you can not get more

than a 4.5 in the final grade of the subject.

A student will be considered "presented" if:

Takes the objective test examination at the 1st opportunity.Takes the objective test examination at the 2nd opportunity or submits the practice of the

2nd opportunity.Aspects to be considered for the evaluation of second opportunity (July):

General rules:

Percentages are the same as those of the first opportunity.The rule of a minimun grade of 4 in the objective test to pass the course also applies.If you

take any part in the 2nd opportunity (objective test or practical) you annul the grade of the first one in that part.The grade of the objective test and the

laboratory practices of the first opportunity are kept for the second opportunity if they are equal or higher than 4.Laboratory practices:

A deadline will be established for submitting a practice for the 2nd opportunity.Aspects to be considered in the case of part-time enrollment:

The obligation to attend activities that require to be in-person is eliminated, except in the case of the objective test.

Sources of information

Basic - Sierra, K., Bates, B. (2005). Head First Java. O?Reilly

- Schildt, H. (2018). Java 9. Anaya Multimedia

- Booch J.; Rumbaugh J. y Jacobson I. (2006). El Lenguaje Unificado de Modelado (2ª ed.) The Unified Modeling

Language (2nd ed.). Addison Wesley

- Martin, R.C. (2004). UML para programadores Java. UML for Java Programmers. Pearson

- Gamma, E.; Helm, R.; Johnson, R. y Vlissides J. (1996). Patrones de Diseño : Elementos de Software Orientado a

Objetos Reutilizable. Design Patterns: Elements of Reusable Object-oriented Software.. Addison Wesley

4/5

Complementary - Schildt, H. (2019). Java: The Complete Reference. McGraw-Hill Education

- Urma, R.G. (2014). Java 8 in Action. Manning

- Rumbaugh, J.; Jacobson, I. y Booch, J. (2004). El Lenguage Unificado de Modelado: Manual de Referencia. The

Unified Modeling Language: Reference Manual. Addison Wesley

- Bloch, J. (2017). Effective Java (3rd ed.). Addison Wesley

- Martin, R.C. (2012). Código limpio : manual de estilo para el desarrollo ágil de software. Clean Code: A Handbook of

Agile Software Craftsmanship. Anaya Multimedia

- Larman C. (2005). Applying UML and Patterns, 3rd ed.. Prentice-Hall

- Freeman, E., Freeman, E., Bates, B. (2004). Head First Design Patterns. O'Reilly

Recommendations

Subjects that it is recommended to have taken before

Programming I/614G01001

Programming II/614G01006

Subjects that are recommended to be taken simultaneously

Programming Paradigms/614G01014

Subjects that continue the syllabus

Software Process/614G01019

Human Machine Interfaces/614G01022

Internet and Distributed Systems/614G01023

Other comments

It is assumed that students know how to program and understand data structures (Programming II subject) but have never used an object-oriented

language. At the beginning of the subject, as the students are introduced to the concepts of object orientation, they will become familiar with the basics

of Java programming language.										

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot

be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

5/5

