

		Teaching Guide		
	Identifying	Data		2024/25
Subject (*)	Numerical Methods for Computing		Code	614G01064
Study programme	Grao en Enxeñaría Informática			I
		Descriptors		
Cycle	Period	Year	Туре	Credits
Graduate	1st four-month period	Fourth	Optional	6
Language	Spanish			· · · ·
Teaching method	Face-to-face			
Prerequisites				
Department	Matemáticas			
Coordinador	Arregui Alvarez, Iñigo	E-m	ail inigo.arregui@	udc.es
Lecturers	Arregui Alvarez, Iñigo E-mail		E-mail inigo.arregui@udc.es	
Web			·	
General description				

	Study programme competences / results
Code	Study programme competences / results
A1	Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos
	sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.
A33	Capacidade de analizar e avaliar arquitecturas de computadores, incluíndo plataformas paralelas e distribuídas, así como desenvolver e optimizar sóftware para elas
A41	Capacidade para avaliar a complexidade computacional dun problema, coñecer estratexias algorítmicas que poidan conducir á súa resolución e recomendar, desenvolver e implementar aquela que garanta o mellor rendemento de acordo cos requisitos establecidos.
B3	Capacidade de análise e síntese

Learning outcomes			
Learning outcomes		Study programme	
	con	npetences /	
	results		
Knowledge of the most representative models in science and engineering, specially in computing, formulated by mathematical	A1		
models and that need numerical methods			
Knowledge and comprehension of the numerical techniques better adapted for each one of the formulated models	A1	B3	
	A33		
	A41		
Implementation of software that develops the numerical techniques, or the use of software tools that develop them	A1	B3	
	A41		
Abord of problems that arise in the fields of computational science, covering from the understanding of the models to the	A1	B3	
practical and efficient implementation in computer	A41		

Contents		
Topic Sub-topic		
Matrix numerical methods and applications	- Numerical resolution of large linear systems. Direct and iterative methods. Sparse	
	matrices. Applications	
	- Power method for eigenvalues. Google page rank algorithm	

Numerical methods for computer graphics	- Interpolation and piecewise interpolation
	- Spline interpolation
	- Introduction to B-splines and Bezier curves
	- Applictions in computer graphics
	- Surfaces
Numerical methods in optimization	- Descent methods
	- Application to resolution of linear systems
	- Least-square problems
Numerical resolution of differential equations. Applications	- Introduction to partial differential equations
	- Numerical methods for initial value problems
Numerical methods implementation	- Some MatLab and Python commands

Plannin	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
A1 A33 A41 B3	12	28	40
A1 A41 B3	4	14	18
A1 B3	3	0	3
A1	2	0	2
A1 B3	21	60	81
	6	0	6
	Competencies / Results A1 A33 A41 B3 A1 A41 B3 A1 B3 A1	Results(in-person & virtual)A1 A33 A41 B312A1 A41 B34A1 B33A12A1 B321	Competencies / ResultsTeaching hours (in-person & virtual)Student?s personal work hoursA1 A33 A41 B31228A1 A33 A41 B31228A1 A41 B3414A1 B330A120A1 B32160

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Laboratory practice	Some applied problems will be posed, different techniques will be discussed and the chosen one will be implemented.
	In 2020/21, it will be transmitted by streaming; nevertheless, the attendance at the classroom will be suggested.
Problem solving	Applied problems will be posed and solved by the teacher in order to understand the different methods and techniques explained in the theoretical courses.
	In 2020/21, it will be transmitted by streaming; nevertheless, the attendance at the classroom will be suggested.
Mixed	The student will have to solve some theoretical questions and applied problems.
objective/subjective	If allowed by the normative, it will take place in the classroom. Only in case of confinement the students will do it by means of
test	telematic tools (Teams, Moodle).
Practical test:	Some(s) of the practical proposals will include a proof in which the students will have to resolve one or two problems with help
	of the codes previously elaborated.
Guest lecture /	In the session magistral the professor will expose the theoretical and practical contents. The contents will be issued from real
keynote speech	problems, the concepts and methods will be developed and some applied examples and exercises will be presented.

	Personalized attention
Methodologies	Description
Laboratory practice	- The teacher will supervise and discuss with the students their progress in their respective tasks.
Problem solving	- The teacher will expose the goals of the supervised project, and will discuss and overview the progress and the final results.
	- The teacher will attend the students in all their doubts about the theoretical concepts and practical application.
	- In 2020/21, it will be done by means of telematic tools.

Assessment

Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	A1 A33 A41 B3	The student will implement the adequate numerical methods in order to solve some proposed applied problems.	40
Mixed objective/subjective test	A1 B3	Theoretical-practical control about the contents of the subject.	50
Practical test:	A1	Short exam in which the students will have to resolve one or two problems with help of the previously elaborated codes.	10

Assessment comments

To surpass the matter, the student will have to:

- do at leat the 75% of the proposed laboratory practices

- obtain at least a qualification of 4 in the mixed objective/subjective proof.

In the case of presencial activities, facilities will be given to part-time students.

	Sources of information
Basic - R.L. Burden, J.D. Faires (2011). Análisis Numérico. Cengage Learning	
	- D. Kincaid, W. Cheney (1994). Análisis numérico: las matemáticas del cálculo científico. Addison Wesley
	- J.H. Mathews, K.D. Fink. (2000). Métodos numéricos con MATLAB. Prentice-Hall
	- J. Kiusalaas (2005). Numerical Methods in Engineering with Python. Cambridge U.P.
	- (1996). Matlab, the language of scientific computing. Mathworks
	- (1996). Matlab, Partial differential equations toolbox. Mathworks
Complementary	

 Recommendations

 Subjects that it is recommended to have taken before

 Programming I/614G01001

 Calculus/614G01003

 Programming II/614G01006

 Algebra/614G01010

 Subjects that are recommended to be taken simultaneously

 Subjects that continue the syllabus

 Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.