

|                     |                                                        | Teaching Guide          |                         |                                   |  |
|---------------------|--------------------------------------------------------|-------------------------|-------------------------|-----------------------------------|--|
|                     | Identifying D                                          | ata                     |                         | 2024/25                           |  |
| Subject (*)         | Calculus                                               |                         | Code                    | 614G01003                         |  |
| Study programme     | Grao en Enxeñaría Informática                          |                         | I                       | I                                 |  |
|                     | -                                                      | Descriptors             |                         |                                   |  |
| Cycle               | Period                                                 | Year                    | Туре                    | Credits                           |  |
| Graduate            | 1st four-month period                                  | First                   | Basic training          | 6                                 |  |
| Language            | SpanishGalicianEnglish                                 |                         |                         |                                   |  |
| Teaching method     | Face-to-face                                           |                         |                         |                                   |  |
| Prerequisites       |                                                        |                         |                         |                                   |  |
| Department          | Matemáticas                                            |                         |                         |                                   |  |
| Coordinador         | Hervella Nieto, Luis Maria E-mail luis.hervella@udc.es |                         | lc.es                   |                                   |  |
| Lecturers           | Cendan Verdes, Jose Jesus                              | E-ma                    | ail jesus.cendan.ve     | rdes@udc.es                       |  |
|                     | García Rodríguez, José Antonio                         |                         | jose.garcia.rodri       | jose.garcia.rodriguez@udc.es      |  |
|                     | González Pérez, Patricia                               | patricia.gonzalez       | patricia.gonzalez.perez |                                   |  |
|                     | Gonzalez Taboada, Maria                                |                         | maria.gonzalez.t        | taboada@udc.es                    |  |
|                     | Hervella Nieto, Luis Maria                             |                         | luis.hervella@uc        | lc.es                             |  |
|                     | Leitao Rodríguez, Álvaro                               |                         | alvaro.leitao@uo        | dc.es                             |  |
|                     | López Salas, José Germán                               |                         | jose.lsalas@udd         | c.es                              |  |
|                     | Ruas Barrosa, Oliver                                   |                         | oliver.ruas@udc         | .es                               |  |
| Web                 | campusvirtual.udc.gal/                                 |                         |                         |                                   |  |
| General description | In this subject we explain concepts of                 | -                       |                         | tinuity, derivative, integration, |  |
|                     | with applications in real problems of c                | ptimisation and approxi | mation of functions.    |                                   |  |

|      | Study programme competences / results                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences / results                                                                                             |
| A1   | Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos |
|      | sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.       |
| B3   | Capacidade de análise e síntese                                                                                                   |

| Learning outcomes                                                                                                                   |                 |         |      |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------|
| Learning outcomes                                                                                                                   | Study programme |         | amme |
|                                                                                                                                     | con             | npetenc | es/  |
|                                                                                                                                     |                 | results |      |
| Being able to analyze functions of a real variable:                                                                                 |                 |         |      |
| - Limits, continuity, differentiation, optimization and graphical representation                                                    |                 |         |      |
| - Definite and indefinite integration and its application to the calculation of areas and volumes , as well as solving differential |                 |         |      |
| equations.                                                                                                                          |                 |         |      |
| Being able to use a computer application of symbolic and computational calculus for the development of the contents of the          |                 | B3      |      |
| subject                                                                                                                             |                 |         |      |

|                 | Contents                |
|-----------------|-------------------------|
| Торіс           | Sub-topic               |
| Sets of numbers | Classic sets of numbers |
|                 | Complex numbers         |



| Real valued functions of one real variable | Basic definitions                             |
|--------------------------------------------|-----------------------------------------------|
|                                            | Elementary functions                          |
|                                            | Limits                                        |
|                                            | Continuity                                    |
|                                            | Bisection method                              |
|                                            | Lagrange interpolation polynomial             |
| Derivation                                 | Definition of derivative and basic properties |
|                                            | Newton-Raphson method                         |
|                                            | Higher order derivatives                      |
|                                            | Applications of derivatives                   |
|                                            | Convexity and concavity                       |
|                                            | Taylor's theorem                              |
| Integration                                | Indefinite integration                        |
|                                            | Riemann integration                           |
|                                            | Fundamental Theorem of Calculus               |
|                                            | Numerical integration                         |
|                                            | Improper integration                          |
|                                            | Applications of integration                   |
|                                            | Differential equations                        |
| Pyhton for one variable calculus           | SymPy introduction                            |
|                                            | Limits and continuity in Sympy                |
|                                            | NumPy introduction                            |
|                                            | Graphics with Matplotlib                      |
|                                            | Derivation in Python                          |
|                                            | Integration in Python                         |

|                                                       | Plannin               | g                       |                          |             |
|-------------------------------------------------------|-----------------------|-------------------------|--------------------------|-------------|
| Methodologies / tests                                 | Competencies /        | Teaching hours          | Student?s personal       | Total hours |
|                                                       | Results               | (in-person & virtual)   | work hours               |             |
| Laboratory practice                                   | A1 B3                 | 18                      | 18                       | 36          |
| Guest lecture / keynote speech                        | A1 B3                 | 30                      | 60                       | 90          |
| Seminar                                               | A1 B3                 | 9                       | 9                        | 18          |
| Objective test                                        | A1 B3                 | 0                       | 3                        | 3           |
| Personalized attention                                |                       | 3                       | 0                        | 3           |
| (*)The information in the planning table is for guida | nce only and does not | take into account the l | neterogeneity of the stu | idents.     |

| (") The information in the planning table is for g | guidance only and does not take into account the | neterogeneity of the students. |
|----------------------------------------------------|--------------------------------------------------|--------------------------------|
|                                                    |                                                  |                                |

|                     | Methodologies                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Methodologies       | Description                                                                                                                        |
| Laboratory practice | - The use of the software package Octave, which will be used in the subject for symbolic and numerical computation, will be        |
|                     | taught.                                                                                                                            |
|                     | - Problems related to the subject will be solved using Octave                                                                      |
| Guest lecture /     | - Presentations in (previously provided to students) containing the basic notes to follow the development of the subject, will be  |
| keynote speech      | maid using a projector                                                                                                             |
|                     | - Short videos will be used to illustrate some key points in the development of the subject, both in the theoretical and practical |
|                     | parts.                                                                                                                             |
| Seminar             | - Doubts of the students will be resolved, as well as works and exercises from the problem sets, previously available, or others   |
|                     | proposed by the teacher or the students. For this, when necessary, the software explained in the laboratory practices will be      |
|                     | used.                                                                                                                              |
| Objective test      | - A quiz consisting of a collection of theoretical and/or practical questions will be done                                         |



| Methodologies       | Description                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Seminar             | - The diversity of the students and their background recomends giving an orientation, that should be carried out in the     |
| Laboratory practice | framework of a personalized tutorial action.                                                                                |
|                     | - In the laboratory sessions the teacher, who will be present in the clasroom, will guide and help students to develop the  |
|                     | practises, teaching them in the use of a software package, helping them to understand some theoretical and practical aspect |
|                     | of the subject.                                                                                                             |
|                     | - During the seminars (TGR) the teacher will help the students in the resolution of theoretical and applied exercises.      |
|                     | - Tutorials will be held through the Teams platform to students who request it.                                             |

|                                |                            | Assessment                                                                                                               |               |
|--------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| Methodologies                  | Competencies / Description |                                                                                                                          | Qualification |
|                                | Results                    |                                                                                                                          |               |
| Seminar                        | A1 B3                      | Throughout the course there will be two test-type tests with a maximum grade, each                                       | 60            |
|                                |                            | one, of 10% of the grade. Those students who do not reach the maximum grade in                                           |               |
|                                |                            | these written tests will be able to recover the remaining part by taking the mixed test.                                 |               |
| Guest lecture / keynote speech | A1 B3                      | There will be no evaluation practices during these sessions.                                                             | 0             |
| Laboratory practice            | A1 B3                      | Up to 4 assessment tests will be carried out during the laboratory classes that will account for 40% of the final grade. | 0             |
|                                |                            | Only students enrolled part-time who have not been evaluated in the laboratory                                           |               |
|                                |                            | practical part will be able to take a specific test to recover 40% of the mark                                           |               |
|                                |                            | corresponding to this part.                                                                                              |               |
| Objective test                 | A1 B3                      | The final exam, with a value between 40 and 100% (depending on the grade obtained                                        | 40            |
|                                |                            | in this objective test and in the seminar part) will consist of taking a written test.                                   |               |

Assessment comments

The students will finish the class period with a maximum of 60% of the grade, which will be obtained through four quizzes that will be conducted during seminar sessions (each quiz carrying a weight of 15%). In each of these quizzes, each student will solve one or several practical problems using their laptop and Python software, as explained in the laboratory practices.

The teaching staff may require the oral defense of any of these controls from part of the students.

Note: If any illicit activity is detected in any of these quizzes (such as copied exercises, inappropriate use of online resources, etc.), all students involved will receive a grade of 0 for the respective quiz, and, depending on the severity of the incident, the teachers may decide to assign a global grade of 0 for the entire "Seminar" section.

Note 2: The use of intelligence artificial tools (ChatGPT, Github Copilot, etc.) during these quizzes is completely prohibited, except if there is an explicit consent of the teaching staff. Its use in any of the controls will result in an overall grade of 0 in the entire "Seminar" section.

On dates determined by the Faculty Board, students will take a written objective test (final exam) for the course. The grade obtained in this test will be scaled so that each student has the opportunity to recover the portion lost in the evaluation corresponding to the seminars. Thus, this test will account for 40% to 100% of the final grade for the course.

However, it is necessary to obtain a grade equal to or higher than 2.50 out of 10 in the objective test to pass the course. If this grade it is not achieved, the grade for the "Seminar" section will not be added, so only the grade of the objective test will appear in the global qualification.

The objective test for the second opportunity (June or July) will follow the same principles as the first opportunity.

The evaluation of the seminars for part-time students will be conducted taking into account their specific circumstances, as far as possible.

Regarding the extraordinary December session, the evaluation process will include:

a) An objective test worth a maximum of four points.

b) An exam to assess the knowledge acquired in the laboratory practices, worth a maximum of six points.



|               | Sources of information                                                                                               |
|---------------|----------------------------------------------------------------------------------------------------------------------|
| Basic         | Bibliografía básica: Profesorado desta asignatura. Cálculo en una variable. Jupyter Book.                            |
|               | https://gei-cal.github.io/JB-Calculo1-UDC G. Strang, E. Herman. Cálculo (Volumen 1). Openstax:                       |
|               | http://openstax.org/books/cálculo-volumen-1/G. Strang, E. Herman. Cálculo (Volumen 2). Openstax:                     |
|               | https://openstax.org/books/cálculo-volumen-2/R. Larson, B.H. Edwards, Cálculo 1, 10ª edición. Ed. McGraw-Hill,       |
|               | 2016.R.T. Smith, R.B. Minton. Cálculo 1, 2ª edición. Ed. McGraw-Hill, 2003. Q. Kong, T. Siauw, A. Bayen. Pyhton      |
|               | Programming and Numerical Methods. Jupyter Book de Berkeley, 2020                                                    |
|               | (https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html).R. Johansson. Numerical Python. Ed. Apress,       |
|               | 2019 (pdf on line).J. Kiusalaas. Numerical methods in engineering with Python, 3ª edición. Ed. Cambridge, 2013.      |
| Complementary | Bibliografía complementaria:Blog "existelimite" de Luis Hervella, Universidade da Coruña:                            |
|               | https://existelimite.blogspot.com/Curso "Cálculo I". Domingo Pestana, José Manuel Rodríguez, Universidad Carlos III: |
|               | https://ocw.uc3m.es/course/view.php?id=239Curso "Cálculo de funciones de 1 variable" de Miguel Martín Suárez,        |
|               | Universidad de Granada: https://www.ugr.es/~mmartins/material.htm                                                    |

| Recommendations                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Subjects that it is recommended to have taken before                                                                                            |
|                                                                                                                                                 |
| Subjects that are recommended to be taken simultaneously                                                                                        |
|                                                                                                                                                 |
| Subjects that continue the syllabus                                                                                                             |
| Numerical Methods for Computing/614G01064                                                                                                       |
| Other comments                                                                                                                                  |
| Daily work is recommended for getting optimal profit from the seminars (TGR) and laboratory practices. Also assistance to the master classes is |
| recommended.                                                                                                                                    |

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.