		Guia docente			
	Datos Ident	ificativos		2024/25	
Asignatura (*)	MÁQUINAS TERMICAS E HIDRA	AULICAS	Código	730G04023	
Titulación	Grao en Enxeñaría en Tecnoloxías Industriais				
		Descriptores			
Ciclo	Periodo	Curso	Tipo	Créditos	
Grado	2º cuatrimestre	Tercero	Obligatoria	6	
Idioma	CastellanoGallego				
Modalidad docente	Presencial				
Prerrequisitos					
Departamento	Enxeñaría Naval e Industrial				
Coordinador/a	Lema Rodríguez, Marcos Correo electrónico marcos.lema@udc.es				
Profesorado	Lema Rodríguez, Marcos Correo electrónico marcos.lema@udc.es			@udc.es	
	López Peña, Fernando		fernando.lope	ez.pena@udc.es	
Web		1	1		
Descripción general	Se pretende dar una visión gener	al de los tipos, componentes, f	uncionamiento, usos y	aplicaciones de las máquinas de	
	fluido, tanto térmicas (fundamentalmente motores alternativos, turbinas de gas y turbinas de vapor) como hidráulicas. El				
	alumno alcanzará las habilidades que todo ingeniero industrial precisa en su carrera profesional en el campo relacionado				
	con estas máquinas de fluidos.				

	Competencias / Resultados del título
Código	Competencias / Resultados del título
A21	TEM6 Conocimiento aplicado de los fundamentos de los sistemas y máquinas fluidomecánicas.
B2	CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias
	que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
B5	CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un
	alto grado de autonomía
C4	C6 Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben
	enfrentarse.

Resultados de aprendizaje			
Resultados de aprendizaje	Con	npetenc	ias /
	Result	ados de	el título
Conocer los tipos, componentes, funcionamiento, usos y aplicaciones da las máquinas de fluido	A21	B2	C4
		B5	

Contenidos			
Tema	Subtema		
Los temas siguientes desarrollan los contenidos que se	Motores. Turbomáquinas.		
indican tal como aparecen en la memoria de verificación			
TEMA 1.Introdución a las máquinas de fluido	Lección 1.Introdución a las máquinas de fluido		

TEMA O Mataura da en 1 de 1 de 1 de 1	Leville 4 Company of the second
TEMA 2.Motores de combustión interna alternativos	Lección 1.Características fundamentales de los MCIA
	Lección 2.Ciclos de trabajo en MCIA. Ciclos de aire.
	Lección 3.Pérdidas de calor. Refrigeración
	Lección 4.Pérdidas mecánicas. Lubricación
	Lección 5.El proceso de renovación de la carga
	Lección 6.Sobrealimentación de MCIA
	Lección 7.El proceso de combustión
	Lección 8.Semejanza de motores
TEMA 3.Turbomáquinas térmicas	Lección 1. La turbina de vapor
	Lección 2. La turbina de gas
	Lección 3. Ecuación fundamental de las turbomáquinas
	Lección 4. Escalonamientos
	Lección 5.Pérdidas y regulación en turbomáquinas
TEMA 4.Turbomáquinas hidráulicas	Lección 1.Introducción
	Lección 2.Balance energético en turbomáquinas hidráulicas
	Lección 3.Teorema de Euler. Conceptos básicos de teoría unidimensional.
	Lección 4.Semejanza en máquinas hidráulicas
	Lección 5.Curvas características de turbobombas
	Lección 6.Instalaciones de turbobombas
	Lección 7.Regulación y arranque de turbobombas hidráulicas
Programa de Prácticas.	Práctica nº 1. Despiece de motores. Curva de Potencia y Consumo.
	Práctica nº 2. Módulo de turbinas.
	Práctica nº 3. Caracterización de una bomba cetrífuga.
	Práctica nº 4. Caracterización de una bomba Pelton.

	Planificac	ión		
Metodologías / pruebas	Competencias /	Horas lectivas	Horas trabajo	Horas totales
	Resultados	(presenciales y	autónomo	
		virtuales)		

Prácticas de laboratorio	A21 B2 B5	4	6	10
Sesión magistral	A21 B2 B5 C4	28	42	70
Prueba mixta	B2	0	2	2
Trabajos tutelados	B2 B5 C4	2	9	11
Solución de problemas	A21 B5 C4	20	30	50
Atención personalizada		7	0	7
(*) los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos				

	Metodologías
Metodologías	Descripción
Prácticas de	En visitas a la "Escuela de Energía y Propulsión de la Armada" en Ferrol y en el laboratorio de la EPS
laboratorio	
Sesión magistral	Son las clases de teoría
Prueba mixta	Se realizarán dos pruebas de evaluación, una a mediados y otra al final de curso. Consistirán en una prueba escrita en la que
	habrá que responder diferentes tipos de preguntas teóricas y resolver problemas cortos y largos.
Trabajos tutelados	Se realizarán trabajos sobre temas planteados en clase y sobre las prácticas de laboratorio.
Solución de	Son las clases de resolución de problemas propuestos
problemas	

	Atención personalizada
Metodologías	Descripción
Prácticas de	Actualmente parte de las prácticas de esta materia, correspondiente a la parte de máquinas térmicas, se desarrollan en la
aboratorio	Escuela de Energía y Propulsión de la Armada Española, en Ferrol. Se necesita, por lo tanto el guiado personalizado de los
	alumnos por parte del profesor de la materia, así como por parte de un profesor de la Armada.
	Las prácticas de máquinas hidráulicas se realizan en el laboratorio de la EPS en grupos reducidos de un máximo de 8 persoas por sesión.
	Aquellas alumnas y alumnos con dispensa académica deberán realizar las prácticas de laboratorio y podrán voluntariamente resolver problemas facilitados por las y los docentes de la asignatura cuya solución será discutida en tutorías, y que podrá formar parte de la evaluación final. Las fechas de la realización de las prácticas y de la entrega de las memorias correspondientes podrán ser acordadas con los y las docentes de la asignatura.
	La atención personalizada se refiere a las horas de tutoría habituales.

		Evaluación	
Metodologías	Competencias /	Descripción	Calificación
	Resultados		
Trabajos tutelados	B2 B5 C4	Se realizarán dos trabajos tutelados durante el cuatrimestre, cuyo contenido se hará	15
		coincidir con cada una de las partes de la asignatura. La calificación obtenida se	
		conservará para la segunda oportunidad. Aquellos alumnos y alumnas que no	
		realicen los trabajos tutelados obtendrán una calificación de 0 y no podrán hacer	
		entregas posteriores.	

Prueba mixta	B2	En la convocatoria de primera oportunidad la evaluación de la asignatura se hará de	70
		forma continua con dos pruebas mixta: La primera prueba se realizará a lo largo del	
		primer cuatrimestre y evaluará a los alumnos y alumnas del contenido de la parte de	
		Máquinas Térmicas y tendrá un peso de 60%. La segunda prueba se realizará en la	
		fecha prevista en el calendario de examenes de la EPEF donde se evaluará del	
		contenido de Máquinas Hidráulicas y tendrá un peso de 40%. En la primera	
		oportunidad no será posible evaluarse de todo el contenido de la asignatura en un	
		único examen.	
		Para poder aprobar la asignatura en primera oportunidad es necesario obtener una	
		nota mínima de 5 sobre 10 en cada prueba mixta y la nota final se obtendrá con la	
		media ponderada con el peso de cada parte. Los alumnos que solo aprueben una de	
		las pruebas la liberarán y conservarán dicha nota para la convocatoria de segunda	
		oportunidad. Por lo tanto, estos alumnos y alumnas solo tendrán que evaluarse en	
		segunda oportunidad de la parte que no hayan aprobado en primera oportunidad.	
		Los alumnos y alumnas que se hayan presentado en primera oportunidad a los dos	
		exámenes y que no hayan superado los dos o uno de ellos obtendrán la calificación	
		de ?suspenso?. Los alumnos y alumnas que no se hayan presentado a los dos	
		exámenes o a uno de ellos recibirán la calificación de ?no presentado?.	
Prácticas de	A21 B2 B5	La asistencia a las practicas de laboratorio es obligatoria, así como la entrega y	15
aboratorio		aprobado de la memoria de prácticas correspondiente a la parte de máquinas	
		hidráulicas. Los alumnos y alumnas que no acudan a las prácticas en las fechas	
		previstas no podrán superar la asignatura en el presente curso académico y no habrá	
		posibilidad de realizar las prácticas de nuevo hasta el siguiente curso. Aquellos	
		alumnos y alumnas que no aprueben la memoria de prácticas que se entregará en la	
		parte de máquinas hidráulicas (5 sobre 10) no podrán aprobar la asignatura en la	
		primera oportunidad. Estos alumnos podrán realizar un examen de prácticas en la	
		convocatoria de segunda oportunidad que, en caso de aprobarla, les permitirá	
		aprobar la asignatura en dicha convocatoria.	
		Los alumnos y alumnas que realicen y aprueben las prácticas en un mismo año	
		académico, y en caso de no aprobar la asignatura, no tendrán que repetirlas en los	
		tres cursos siguientes al que hayan realizado las prácticas. En ningún caso se	
		evaluarán memorias de prácticas realizadas en cursos precedentes.	
Otros			

Observaciones evaluación

La prueba mixta de la parte de Máquinas Térmicas tiene un peso del 60% y la de Máquinas Hidráulicas del 40%. Para aprobar la asignatura el alumno necesita una nota media igual o superior a 5 en cada una de estas dos partes.

La realización de las prácticas de laboratorio son obligatorias e imprescindibles para que el alumno pueda aprobar la asignatura.

Aquellos alumnos y alumnas que se presenten a la convocatoria adelantada, tiene que cumplir los mismos requisitos exigidos en las convocatorias ordinarias para superar la asignatura: Realización obligatoria de las prácticas de laboratorio en cursos anteriores y nota final en la prueba mixta igual o superior a 5/10 tanto en la parte de Máquinas Térmicas como en Máquinas Hidráulicas. En esta convocatoria la prueba mixta tendrá un peso del 85% y las prácticas de laboratorio del 15%.

Aquellos alumnos y alumnas con dispensa académica deberán realizar: Las prácticas de laboratorio, los trabajos tutelados y las pruebas mixtas. Sin embargo, los alumnos y las alumnas con dispensa académica podrán acordar con los y las docentes de la asignatura fechas alternativas para la realización de los trabajos tutelados.

Todos los aspectos normativos relacionados con ?dispensa académica?, ?dedicación al estudio?, ?permanencia? y ?fraude académico? se regirán de acuerdo con la normativa académica vigente de la UDC.

@page { margin: 0.79in }
td p { margin-bottom: 0in }

p { margin-bottom: 0.1in; line-height: 120% }

@page { margin: 0.79in }

p { margin-bottom: 0.1in; line-height: 120% }

	Fuentes de información
Básica	- Marta Muñoz Domínguez (1999). Problemas resueltos de motores térmicos y turbomáquinas térmicas. UNED
	- F. Payri (2002). Motores de combustión interna alternativos. UPM-ETSII
	- MATAIX, C. (1975). Turbomáquinas Hidráulicas . ICAI, España
	- MACINTYRE, A. (1997). Bombas e Instalações de Bombeamento . Livros Técnicos e Científicos Editora, S.A.,
	Brasil
	- HERNÁNDEZ KRAHE, J.M. (1976). Mecánica de Fluidos y Máquinas Hidráulicas . UNED, Madrid
	- Muñoz Torralbo, Manuel (2002). Máquinas Térmicas. UNED
	- HERNÁNDEZ, J y CRESPO, A. (1976). Problemas de Mecánica de Fluidos y Máquinas Hidráulicas . UNED
Complementária	- YOUNG, F.R. (1989). Cavitation . McGraw-Hill
	- WISLICENUS, G.F. (1965). Fluid Mechanics of Turbomachinery, . Dover, USA
	- STEPANOFF (1993). Centrifugal and Axial Flow Pumps . John Wiley and Sons, USA
	- REQUEJO, I. y otros. (). Problemas de Motores Térmicos . Serv. publicaciones UPV, Valencia.
	- PFLEIDERER, C. (1971). Bombas Centrífugas y Turbocompresores . Labor, USA
	- MUÑOZ, M y PAYRI, F. (1978). Turbomáquinas Térmicas Serv. publicaciones ETSII, Madrid
	- MUÑOZ, M y PAYRI, F. (1984). Motores de Combustión Interna Alternativos . Serv. publicaciones UPV, Valencia
	- KARASSIK, I.J. y CARTER, R. (1980). Bombas Centrífugas . CECSA, México
	- FOX R.W. y McDONALD A.T. (1995). Introducción a la Mecánica de Fluidos . McGraw-Hill
	- CHERHASSY, V.M. (1980). Pumps, Fans, compressors . MIR, Moscow
	- CASANOVA, E. (2001). Máquinas para la Propulsión de Buques . Serv. publicacións UDC

Recomendaciones	
Asignaturas que se recomienda haber	cursado previamente

	CÁLCULO/730G03001
	FÍSICA I/730G03003
	ALGEBRA/730G03006
	FÍSICA II/730G03009
	ECUACIONES DIFERENCIALES/730G03011
	TERMODINÁMICA/730G03014
	MECÁNICA DE FLUIDOS/730G03018
CALOR Y FRÍO INDUSTRIAL/REFRIGERACIÓN/730G03020	
	MECÁNICA/730G03026
	Asignaturas que se recomienda cursar simultáneamente
	Asignaturas que continúan el temario
	Otros comentarios

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías