		Teaching	Guide		
Identifying Data					2018/19
Subject (*)	Regulation of gene expression			Code	610441006
Study programme	Mestrado Universitario en Bioloxía Molecular , Celular e Xenética				
		Descrip	otors		
Cycle	Period	Yea	r	Туре	Credits
Official Master's Degree	e 1st four-month period	Firs	t	Obligatory	3
Language	SpanishEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Bioloxía				
Coordinador	Freire Picos, María Ángeles	E-mail maria.freirep@udc.es		c.es	
Lecturers	Lecturers Cerdan Villanueva, Maria Esperanza		E-mail esper.cerdan@uc		c.es
	Freire Picos, María Ángeles			maria.freirep@udo	c.es
Web	ciencias.udc.es/bcm				
General description	This course is focussed on the m	echanisms of ge	ne expression re	egulation in the nucleous	and the cytoplasm as well as th
	cellular machineries involved in the	hose processes.			

	Study programme competences
Code	Study programme competences
A1	Skills of using usual techniques and instruments in the cellular, biological and molecular research: that are able to use techniques and
	instruments as well as understanding potentials of their uses and applications.
A2	Skills of working in a sure way in the laboratories knowing operation handbooks and actions to avoid incidents of risk.
А3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A5	Skills of understanding the microorganisms' role as pathogenic agents and as biotechnological tools.
A6	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A9	Skills of understanding the structure and dynamics of proteins to individual and proteomic level, as well as the techniques that are
	necessary to analyze them and to study their interactions with other biomolecules.
A10	Skills of modifying genes, proteins and chromosomes with biotechnological applications
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
A13	Skills to become a professional in health, pharmacy, veterinary, animal production, biotechnology or food sectors.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B2	Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the formulation of
	biological problems and the looking for solutions.
В3	Skills of management of the information: that are able to gather and to understand relevant information and results, obtaining conclusions
	and to prepare reasoned reports on scientific and biotechnological questions
B5	Correct oral and written communication on scientific topics in the native language and at least in another International diffusion language
B6	Skills of team work: that are able to keep efficient interpersonal relationships in an interdisciplinary and international work context, with
	respect for the cultural diversity.
В9	Skills of preparation, show and defense of a work.
СЗ	Skills of Using basic tools of the information technologies and communications (ICT) necessary to the exercise of his profession and for
	the apprenticeship over his life.
C8	Considering the importance that the investigation has, the innovation and the technological development in the socioeconomic advance
	and cultural of the society.

Learning outcomes	
Learning outcomes	Study programme
	competences

Skills of make presentations regarding the actual knowledge state in the field.	AR1	BR1	CC3
Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic	AR2	BR2	CC8
variability	AR3	BR3	
Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics	AR5	BR5	
Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic	AR6	BR6	
variability	AR9	BR9	
Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the	AR10		
formulation of biological problems and the looking for solutions.	AR11		
	AR13		
Skills to be critical with the results and the hypothesis as well as evaluation and interpretation of results .	AR13	BR1	CC8
		BR2	

	Contents
Topic	Sub-topic
Topic 1	Introduction to techniques and methodology to study the regulation of gene
	expression.
Topic 2	The transcriptional machinery in eukaryotes. Transcripcional general factors (TFII) and
	TAFs. The mediator complex and the complex SRB10 kinase.
Topic 3	The complexes that remodel chromatin. ATP-hydrolyzing complexes. SWI/SNF and
	ISWI complexes.
Topic 4	SAGA complex and counterparts. Acetylation and regulation of gene expression:
	HATs. The gene repression processes and deacetylation. The repression
	mechanisms of gene methylation.
Topic 5	Specific transcripcion factors. The signaling cascades and specific transcription
	factors. Nuclear receptors and transcriptional control.
Topic 6	New concepts in the regulation of gene expression. Transcripcion factories and other
	models.
Topic 7	RNA processing and nucleous-cytoplasm transport: the machinery of RNA cleavaje
	and polyadenylation, transport across the Nuclear Pore Complex and factors involved.
	Cytosolic polyadenylation.
Topic 8	RNA secondary structures and protein-factors with RNA-binding domains in the
	regulation of mRNA levels. mRNA stability.
Topic 9	RNA and protein translation. Local protein translation. The 3´-UTRs in the translation
	efficiency process. RNA Editing.
Topic 10	micro and siRNAs in the regulation of Gene Expression: basic and applied aspects.

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Seminar	A5 A6 A9 A10 A11 B3	2	8	10
	B5 B6 B9 C3 C8			
Laboratory practice	A1 A2 A3 B1 B2	7	7	14
Guest lecture / keynote speech	A5 A6 A9 A10 A11	8	16	24
Problem solving	A13 B1 B2	2	8	10
Objective test	A5 A6 A9 A10 A11	2	14	16
	A13			
Personalized attention		1	0	1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Seminar	The students will prepare a scientific presentation about a subject related to the mechanisms of gene expression regulation
	and will present it to the class. The presentation will be followed by a debate.
Laboratory practice	Experimental work in the laboratory about genetic engineering and gene expression analysis.
Guest lecture /	Magister lectures about the principal topics of the learning program
keynote speech	
Problem solving	Learning based on problem solving. The students will have to solve a problem with the aid of previous information about the
	subject.
Objective test	The exam will include questions based in multiple option selection and also problems. This will allow to modulate the final
	qualification of each student

	Personalized attention			
Methodologies	ogies Description			
Seminar	Students will be oriented before and during the preparation of seminars and the development of the practical course. They will			
Laboratory practice	involve interpretation of results. The problems and case solving will also need an orientation from the teachers.			
Problem solving				
	Students with part-time dedication or waiver of presence should contact the teachers of the subject in the early going to			
	establish a schedule of activities to acquire and evaluate in a complementary way the competences.			
	Titotial schedules:			
	Pfra. Esperanza Cerdán			
	Tuesday, wednesday and Thursday from 12.30 to 14.30			
	Pfra. M ^a Angeles Freire			
	Monday 13-15 or previous appointment by e-mail. Some doubts may also be solved directly by e-mail.			

Assessment				
Methodologies	Competencies	Description	Qualification	
Seminar	A5 A6 A9 A10 A11 B3	Students give their peers a seminar about sppecific aspects of work of other scientists	15	
	B5 B6 B9 C3 C8	on an issue related to regulation of gene expression.		
		Half-presential students will have a specific activity combining the seminar contents		
		and the problem solving		
Laboratory practice	A1 A2 A3 B1 B2	The collection and management of information from databases and scientific suits	25	
		available on the web. A practical case will be carried out by students.		
		It will also be a laboratory session focussed on a transcriptional regulation experiment.		
Guest lecture /	A5 A6 A9 A10 A11	Althought the theorethical knowledges will be teached and ellaborated in magister	10	
keynote speech		clases, we will take into consideration the assistence to the theorethical clases and		
		the student's participation.		
Problem solving	A13 B1 B2	We will present problems on different subjects related with the gene expression	25	
		regulation to verify if the students are able to use the infomation that was given to		
		them, or other that they find, in order to solve them.		
		Half-presential students will have a specific activity combining the seminar contents		
		and the problem solving		

Objective test	A5 A6 A9 A10 A11	It will consist in an exam that may include multiple answer questions, or case solving	
	A13	and will allow to mudulate the student final evaluation note.	

Assessment comments

Half-presential students will have a specific activity combining the seminar contents and the problem solving (40%)

Students with part-time dedication or waiver attendance may choose to be evaluated in a final exam if they do not qualify for continuous evaluation.

To have a Non-Presented qualification, students can not participate in more that 15% of the activities.

Sources of information

Basic

- Lodish, Berk, et al (2013). Molecular and Cellular Biology 7th Ed. WH Freeman
- Watson, Baker, Bell et al., (2006). Biología Molecular del Gen, 5º Ed. Panamericana
- Lodisch et al., (2005). Biología Molecular de la célula . Panamericana
- Meister, G. (2011). RNA Biology. Wiley-VCH

Artículos y textos especializados Baker, S.P. & Drant, P.A. 2007, "The SAGA continues: expanding the cellular role of a transcriptional co-activator complex", Oncogene, vol. 26, no. 37, pp. 5329-5340. Bhaumik, S.R. & Dr. & Green, M.R. 2002, "Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo", Molecular and cellular biology, vol. 22, no. 21, pp. 7365-7371. Cho, E.J. 2007, "RNA polymerase II carboxy-terminal domain with multiple connections", Experimental & Decide medicine, vol. 39, no. 3, pp. 247-254. Daniel, J.A. & Daniel, J.A. & Grant, P.A. 2007, "Multi-tasking on chromatin with the SAGA coactivator complexes", Mutation research, vol. 618, no. 1-2, pp. 135-148. Gao, R., Mack, T.R. & Dry, Stock, A.M. 2007, "Bacterial response regulators: versatile regulatory strategies from common domains", Trends in biochemical sciences, vol. 32, no. 5, pp. 225-234. Gao, R. & Droteins, A.M. 2009, "Biological Insights from Structures of Two-Component Proteins," Annual Review of Microbiology, . Kim, H.J., Seol, J.H., Han, J.W., Youn, H.D. & Do, E.J. 2007, "Histone chaperones regulate histone exchange during transcription", The EMBO journal, vol. 26, no. 21, pp. 4467-4474. Koch, F., Jourquin, F., Ferrier, P. & Drymerase II: not genes only!", Trends in biochemical sciences, vol. 33, no. 6, pp. 265-273. Li, X.Y., Bhaumik, S.R., Zhu, X., Li, L., Shen, W.C., Dixit, B.L. & Dreen, M.R. 2002, "Selective recruitment of TAFs by yeast upstream activating sequences. Implications for eukaryotic promoter structure", Current biology: CB, vol. 12, no. 14, pp. 1240-1244. Malik, S. & Dr. Roeder, R.G. 2005, "Dynamic regulation of pol II transcription by the mammalian Mediator complex", Trends in biochemical sciences, vol. 30, no. 5, pp. 256-263. Ng, H.H. & Dird, A. 2000, "Histone deacetylases: silencers for hire", Trends in biochemical sciences, vol. 25, no. 3, pp. 121-126. Wu, J.I., Lessard, J. & Dry Crabtree, G.R. 2009, "Understanding the words of chromatin regulation", Cell, vol. 136, no. 2, pp. 200-206.

Complementary

- Cheng B. and David H. Price. ?Properties of RNA Polymerase II Elongation Complexes Before and After the P-TEFb-mediated Transition into Productive Elongation.?JBC. 282, 21901?21912. 2007. - Sims, R.J., Belotserkovskaya R. and Reinberg, D. ?Elongation by RNA polymerase II: the short and long of it?. Genes & D. ?Elongation by RNA polymerase II: the short and long of it?. Dev. 18, 2437-2468.2004. -Wäle S. and Kehlenbach RH. The part and the whole: Functions of Nucleoporins in nucleocytoplasmic transport. Trends in Cell Biol 20: 461-469. 2010. -Simpson, G.G., Dijwel, P.P., Quesada, V., Henderson, I. and Dean, C. ?FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition.? Cell 13, 777-797. 2003. -Ghazy, M.A., He, X., Singh, B.N., Hampsey, M. and Moore C. ?The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3'-end processing.? Mol. Cell Biol 29, 2296-2307. 2009. -Graber, J.H., McAllister, G.D. and Smith, T.F. ?Probabilistic prediction of Saccharomyces cerevisiae mRNA 3´-processing sites.? Nucleic Acids Res. 30, 1851-1858. 2002. -Bently, D. ?Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors.? Curr. Opin. Cell Biol. 17, 251-256. 2005. -Murchison, E. P. and Hannon, G.J. ?miRNAs on the move: miRNA biogenesis and the RNAi machinery? Current Opinion in Cell Biology 16, 223?229.2004. - Wang, Y., Chih Long Liu, John D. Storey, Robert J. Tibshirani, Daniel Herschlag, and Patrick O. Brown. ?Precision and functional specificity in mRNA decay?. PNAS 99, 5860?5865. 2002. - James E.C. Jepson 1, Robert A. Reenan ?RNA editing in regulating gene expression in the brain.? Biochimica et Biophysica Acta 1779, 459?470.2008. - Wu, H., Neilson, J.R., Kumar, P., Manocha, M., Shankar, P., Sharp, P.A. and Manjunath, N.?miRNA Profiling of Naý"ve, Effector and Memory CD8 T Cells.? PloS One 10 | e1020. 2007.

Recommendations

Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Molecular Techniques/610441002

Advanced Cellular Biology/610441003

Molecular Microbiology /610441010

Protein Structure and Dynamics/610441011

Bioinformatics and Biomolecular models /610441020

Subjects that continue the syllabus

Other comments

Is important that the students attend to the personal titorials to solve doubts.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.