		Teaching Guide			
	ldentifying [Data			2016/17
Subject (*)	Xenómica		Code	610441014	
Study programme	Mestrado Universitario en Bioloxía N	lolecular , Celular e	Xenética		
		Descriptors			
Cycle	Period	Year		Туре	Credits
Official Master's Degre	e 2nd four-month period	First		Optativa	3
Language	SpanishGalicianEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Bioloxía Celular e Molecular				
Coordinador	Vila Taboada, Marta		E-mail	marta.vila.taboa	ada@udc.es
Lecturers	Becerra Fernandez, Manuel E-mail manuel.becerra@udc.es			a@udc.es	
	Vila Taboada, Marta marta.vila.taboada@udc.es			ada@udc.es	
Web		1			
General description	Genomics applies recombinant DNA	, Sanger DNA sequ	encing and N	Next Generation Sec	quencing methodology, and
	bioinformatics to sequence, assemble, and analyze genomes. Diciplines in genomics emcompass several an			ncompass several areas of study	
	including structural and functional ge	enomics, comparativ	e genomics,	and metagenomics	, and have led to an "omics"
	revolution in modern biology.				

	Study programme competences
Code	Study programme competences
А3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B5	Correct oral and written communication on scientific topics in the native language and at least in another International diffusion language.
В9	Skills of preparation, show and defense of a work.
C2	Skills of dominating the oral form expression and compression and written of a foreign language.
C3	Skills of Using basic tools of the information technologies and communications (ICT) necessary to the exercise of his profession and for
	the apprenticeship over his life.
C8	Considering the importance that the investigation has, the innovation and the technological development in the socioeconomic advance
	and cultural of the society.

Learning outcomes			
Learning outcomes	Study	/ progra	amme
	COI	npeten	ces
To learn the basics of the different molecular techniques used in genomics, with particular emphasis in NGS	AR3		CC3
	AR11		
To acquire an updated view about the current scope and future perspectives of structural, functional and evolutionary	AR3	BR1	CC2
genomics	AR11	BR5	CC8
		BR9	
To understand how genomes evolve and how molecular and bioinformatic tools are used for that purpose	AR3	BR1	CC2
	AR11	BR5	CC8
		BR9	
DNA microarrays: experimental set up and data analysis.	AR3		
	AR11		

Contents	
Topic	Sub-topic

Next Generation Sequencing (NGS)	Platforms and applications
Structural Genomics	Mapping, sequencing, annotation and databases
	The Human Genome Project
Comparative Genomics	How do genomes evolve?
Genomes of Prokaryotes	Metagenomics
Genomes of Eukaryotes	Taxonomy
	Paleogenomics
	Medicine
Functional Genomics	DNA microarrays: methodology, types of platforms, experimental set up, data analysis
Computer lab	1. Using GALAXY (https://usegalaxy.org/) for genomic analysis
	2. Gene expression analysis and microarrays

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class hours	Student?s personal work hours	Total hours
ICT practicals	A3 A11 B1	7	14	21
Oral presentation	B5 B9 C2 C3 C8	1.55	6.2	7.75
Guest lecture / keynote speech	A3 A11 B1 C8	14	28	42
Objective test	A3 A11 B1 C8	2	0	2
Personalized attention		2.38	0	2.38
(*)The information in the planning table is for	guidance only and does not	take into account the	heterogeneity of the stud	dents.

	Methodologies
Methodologies	Description
ICT practicals	OUr 10-hour, computer lab curriculum was developed to accompany the lecture course in Genomics. The students work on
	their own web-based investigations and present their results to each other (active learnning).
Oral presentation	Students may hold a 10-minute speech about a genomic issue previously agreed with the instructors.
Guest lecture / keynote speech	The instructors explain the main contents of each topic interacting as much as possible with the students.
Objective test	Written exam.

Personalized attention		
Methodologies	Description	
Oral presentation	Instructors will typically be available via email. Students can arrange for in-person tutoring sessions.	
ICT practicals		

Assessment			
Methodologies	Competencies	Description	Qualification
Oral presentation	B5 B9 C2 C3 C8	Student may hold a 10-minute speech about an interesting topic within the field of	15
		Genomics. They will try to answer any question from the audience. Distance learning students unable to attend this activity will have a maximum score of 85 in their objective test.	
Objective test	A3 A11 B1 C8	The exam will evaluate items discussed in the aforementioned activities.	70
ICT practicals	A3 A11 B1	Attendance is mandatory. Distance learning students will be required to follow certain guidelines/tutorials on their own and finally answer a questionnaire, so that comprehension and performance may be assessed.	15

Assessment comments

Mark "A with distinction" will only be awarded to outstanding students passing the subject in June.

In the case of exceptional circumstances, lecturers may assist the
student to improve his/her learning process and/or catch up on missed work/assessments.
The student is responsible for liaising with his/her lecturer to organise this
assistance by e.g. applying for: an extended deadline to present his/her work or taking an exam in a different
date. The coordinator can request evidence about the reason for such an
application.

	Sources of information
Basic	- Allison, David B., et al (2006). DNA microarrays and related genomics techniques design, analysis, and interpretation
	of experiments. Chapman & amp; Hall/CRC
	- Lesk, Arthur M. (2012). Introduction to Genomics. Oxford University Press
	- Bowtell, D., Sambrook, J. (2003). DNA Microarrays. Cold Spring Harbor Laboratory Press.
	- E. Rinaldis, A. Lahm. (2007). DNA microarrays: current applications. Wymondham: Horizon Bioscience
	- Campbell, A.M & amp; amp; Heyer, L.J. (2007). Discovering Genomics, Proteomics & amp; amp; Bioinformatics.
	Pearson Benjamin Cummings
	- McLachlan, G. J., Do, K-A., Ambroise, C (2004). Analyzing Microarray Gene Expression Data. Wiley-Interscience.
	John Wiley & Dons

Complementary

- Sensen, Christoph W. (2005). Handbook of genome research genomics, proteomics, metabolism, bioinformatics, ethical & proteomics is ethical & proteomics. Wiley-VCH
- Futuyama, Douglas J. (2006). Evolution. Sinauer Associates
- Straalen, Nico M. van (2006). An introduction to ecological genomics. Oxford University Press
- Zhanjiang, Liu (2007). Aquaculture genome techonologies. Blackwell
- Dale Jeremy (2008). From genes to genomes: concepst and applications of DNA technology. John Wiley & DNA technology. John Wiley &

RECURSOS EN INTERNET: Biological database compilation at NAR:

http://nar.oupjournals.org/content/vol29/issue1DOE Joint Genome Institut. Why sequence them?

http://www.jgi.doe.gov/sequencing/why/index.htmlEMBL (European Molecular Blology Laboratory), Bioinformatics.

http://www-db.embl.de/jss/servlet/de.embl.bk.emblGroups.EmblGroupsOrg/serv_0?t=0ExPASy (Expert Protein

Analysis System). http://us.expasy.org/GeneMark: http://opal.biology.gatech.edu/GeneMark/GenomeNet (Kyoto

University Bioinformatics Center).http://www.genome.jp/Genoscope. Le séquençage des génomes.

http://www.genoscope.cns.fr/externe/Francais/Sequencage/GOLD (Genomes Online Database).

http://www.genomesonline.org/Human genome: advanced annotation

tutorial.http://www.mad-cow.org/00/annotation_tutorial.htmlHuman Genome Project

Information.http://www.ornl.gov/sci/techresources/Human_Genome/home.shtmllañez Pareja, E. (1997). Introducción a los Proyectos Genoma. http://www.ugr.es/~eianez/Biotecnologia/genoma-2.htmlKEGG (Kyoto Encyclopedia of Genes and Genomes). http://www.genome.jp/kegg/kegg2.htmlNacional Human Genome Research

Institute: http://www.genome.gov/NCBI (National Center for Biotechnology Information).

http://www.ncbi.nlm.nih.gov/The Sanger Institute.http://www.sanger.ac.uk/TIGR (The Institute for Genomic Research). http://www.tigr.org/tRNAscan-SE 1.21. http://www.genetics.wustl.edu/eddy/tRNAscan-SE/The WWW Virtual Library:

Model Organisms: http://www.ceolas.org/VL/mo/

Recommendations

Subjects that it is recommended to have taken before

Técnicas Celulares/610441001

Técnicas Moleculares/610441002

Mecanismos de xeración da variación xenética/610441005

Regulación da expresión xénica/610441006

Bioinformática e Modelado de Biomoléculas/610441020

Subjects that are recommended to be taken simultaneously

Proteómica/610441013

Cromosomas: Estructura. Función e Evolución/610441015

Xenética Humana/610441016 Toxicología Xenética/610441017

Subjects that continue the syllabus

Traballo de Máster/610441022

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.