

Teaching Guide						
	Identifying Data 2019/2			2019/20		
Subject (*)	Bioinformatics and Biomolecular models Code		Code	610441020		
Study programme	Mestrado Universitario en Biolox	ía Molecular , Ce	elular e Xenética	a	·	
		Descri	ptors			
Cycle	Period Year Type Credits				Credits	
Official Master's Degree	e 2nd four-month period First Optional 3			3		
Language	Spanish					
Teaching method	Face-to-face					
Prerequisites						
Department	BioloxíaCiencias da Computación	n e Tecnoloxías	da Información	Computación		
Coordinador	Dorado de la Calle, Julian		E-mail	julian.dorado@udc.	es	
Lecturers	Becerra Fernandez, Manuel		E-mail	manuel.becerra@u	dc.es	
	Dorado de la Calle, Julian			julian.dorado@udc.	es	
	Fernández Lozano, Carlos		carlos.fernandez@udc.es		udc.es	
Web						
General description	Knowledge management in biolo	gy is the field of	bioinformatics,	and includes both the forma	lization of the information	
	obtained and its organization in a	appropriate datat	bases, the extra	ction of relationships betwee	en the scattered information,	
	the modeling of biological proces	ses and the gen	eration of hypot	heses to support new exper	rimental approaches. From a	
	technical standpoint, bioinformatics using computational methods (the proper method development in this area is often			pment in this area is often		
	called computational biology) and receives contributions from mathematics, physics and computer engineering. However,					
	from the point of view of the obje	ctives, bioinform	atics is a brancl	h of biology, as they can be	biochemistry or microbiology.	
	This interdisciplinary nature of bioinformatics lies both its strength and its weakness: first, the application of ideas brought					
	from other fields consistently pro-	duces spectacul	ar advances; bu	it on the other hand, it is diff	icult to develop appropriate	
	training programs.					
	To realize the importance of bioinformatics in modern biology, it may enough to say that the method most cited publication				method most cited publications	
	in this area is Blast, a computational method that searches and identifies sequences of proteins and nucleic acids in					
	databases: ie more technical ope	erations is perfor	med by comput	ational biologists, and no ex	perimental. In fact, the	
	interpretation of any experiment in biology requires complex, almost inevitably, bioinformatic analysis, which is especially			analysis, which is especially		
	obvious in massive experiments.		-		- · · · ·	

	Study programme competences / results
Code	Study programme competences / results
A3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A9	Skills of understanding the structure and dynamics of proteins to individual and proteomic level, as well as the techniques that are
	necessary to analyze them and to study their interactions with other biomolecules.
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B2	Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the formulation of
	biological problems and the looking for solutions.
B3	Skills of management of the information: that are able to gather and to understand relevant information and results, obtaining conclusions
	and to prepare reasoned reports on scientific and biotechnological questions
B9	Skills of preparation, show and defense of a work.
C3	Using ICT in working contexts and lifelong learning.
C6	Acquiring skills for healthy lifestyles, and healthy habits and routines.
C8	Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.
C9	Ability to manage times and resources: developing plans, prioritizing activities, identifying critical points, establishing goals and
	accomplishing them.

Learning outcomes				
Learning outcomes			Study programme	
			competences /	
Know access to Channels Bioinformatics Web Resources	AR3	BR3	CC3	
		BR9		
Understand and manage properly the area of Bioinformatics		BR3	CC3	
		BR9	CC6	
Being able to function independently to find information about the different programs and their changeable parameters and	AR3	BR2	CC3	
understand the impact on the results of the analysis		BR3	CC9	
		BR9		
To have bioinformatics knowledge of how to make a prediction of the onedimensional characteristics of a protein	AR3	BR1	CC3	
	AR9	BR2	CC6	
	AR11	BR3	CC8	
To be able to perform a simple prediction of the three dimensional structure of a protein based on available data and programs	AR3	BR1	CC3	
on the Web		BR2	CC6	
		BR3	CC8	
			CC9	
Learn the basic methods of molecular simulation and how they are used for the study of proteins	AR3	BR1	CC3	
		BR2	CC6	
		BR3	CC8	

Contents			
Торіс	Sub-topic		
Bioinformatics	Web Resources and Databases in molecular biology. Analysis and comparison of		
	sequences.		
	Sequence alignment. Location of motives. Search of genes. annotation of		
	genes. Browsers genome project. Examples of applications. Data analysis.		
Modeling of Biomolecules Prediction of the characteristics of the protein structure. Obtaining three-d			
	models.		
	Homology modeling. Modeling by threading or by remote homology design.		
	Ab initio methods. Evaluation of the prediction methods.		

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A3 A9 A11	10	20	30
Seminar	B3 B9 C6 C8 C9	2	7	9
Laboratory practice	B1 B2 C3 C9	9	22.5	31.5
Personalized attention		4.5	0	4.5
(*)The information in the planning table is for quide	nee enly and deep net	taka into account the	eterements of the et	Idanta

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Oral presentation complemented by the use of audiovisual media for the purpose of transmitting knowledge and facilitate
keynote speech	learning.
Seminar	Working technique that aims to make powerpoint and word documents on a topic proposed by the teacher.
Laboratory practice	Methodology that allows students to learn effectively through practical activities (demonstrations, simulations, etc.) the theory
	of a field of knowledge through the use of information technology and communications.

	Personalized attention
Methodologies	Description
Seminar	The personal attention that is described in relation to these methodologies are conceived as moments of classroom student
Laboratory practice	work with teacher, this involve mandatory participation for the student.
	The manner and time in which it was held is indicated in relation to each activity along the course according to the work plan of
	the course

		Assessment	
Methodologies	Competencies /	Description	
	Results		
Guest lecture /	A3 A9 A11	A test will be realized to assess the knowledge acquired in the course of lectures.	
keynote speech			
		With this methodology the A5, B2 skills will be assessed	
Seminar	B3 B9 C6 C8 C9	The seminar will be evaluated by taking into account the ability to extract the most	25
		relevant information obtained for the student, the capacity for teamwork and the ability	
		to expose in public.	
		Whit this methodology B1, B3 and B9 competencies will be evaluated	
Laboratory practice	B1 B2 C3 C9	Regular attendance and active participation in the lab, as well as the bulletin	30
		responses made by students will be assessed. They also perform a test to assess the	
		knowledge acquired.	
		With this methodology the A5 and B2 competencies will be assessed	

Assessment comments

Students presented in the first opportunity of June will be eligible to get honours.

Students with a part-time assistance or exemption may agree with teachers specific methods for evalaution early in the course .

Also students engaged as "SEMIPRESENCIALES" should contact the teachers in the first weeks.

Sources of information

Basic	BIOINFORMATICS ? Attwood, T.K. & amp; D.J. Parry-Smith. 1999. Introduction to Bioinformatics. Addison Wesley			
	Longman Limited, Edimburgo. ? Baxevanis, A.D. & amp; B.F. Francis Oullette (Eds.). 2002. Bioinformatics. A practical			
	guide to the analysis of genes and proteins. 2nd Ed.Wiley-Interscience.? Bishop, M. 1999. Bioinformatics. Taylor			
	& Francis, UK.? Claverie, J.M. and C. Notredame. 2003. Bioinformatics for dummies. Wiley Publishing, Inc.?			
	Gibas, C. y P. Jambeck. 2001. Developing Bioinformatics Computer Skills. O'Reilly? Higgins, D. y W. Taylor. 2000.			
	Bioinformatics: Sequence, structure and databanks. Oxford University Press.? Higgs, P. & amp; T.K. Attwood 2005.			
	Bioinformatics and molecular evolution. Blackwell Publishing.? Kanehisa, M. 2000. Post-genome informatics. Oxford			
	University Press? Li, W-H. 1999. Molecular evolution. Sinauer Associates Inc., Massachusetts, 2nd. Ed.? Mount,			
	David W. 2001. Bioinformatics. Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.? Nei, M. y S.			
	Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.? Pevsner, J. 2003. Bioinformatics and			
	Functional Genomics. John Wiley & amp; Sons, Inc.? Rashidi, H.H. and L.K. Buehler. 2000. Bioinformatics Basics.			
	Applications in Biological Science and Medicine. CRC Press, Boca Raton.? Salzberg, S., D. Searls, and S. Kasif			
	(Eds). 1998. Computational Methods in Molecular Biology. Elsevier Science.? Swindell, S.R., R.R. Miller y G.S.A. Myers. 1997. Internet for the Molecular Biologist. Horizon Scientific Press, Norfolk, UK.? Tisdall, J. 2001. Beginning Perl for Bioinformatics. O'Reilly MODELING OF BIOMOLECULES? Bnaszak, L. J. 2000. Foundations of structural			
	biology. Academic Press. ? Bourne, P. E., Weissig, H. 2003. Structural Bioinformatics. John Wiley & Amp; Sons.?			
	Now York 2 Croinbloon T E 1002 PROTEINS: STRUCTURES AND MOLECUL AR PROPERTIES, 2nd edition			
	We From an Armany New York 2 Gémez Merone C. Ramp: Sanche J. (Coorde), 2002 ESTRUCTURA			
	DE BROTEÍNAS, Ariol Cioncia, Barcolona, 2 Lock, A.M. 2000, INTRODUCTION TO BROTEIN ARCHITECTURE			
	THE STRUCTURAL BIOLOGY OF PROTEINS Oxford University Press, Oxford 2 Tramontano & 2006 Protein			
	Structure Prediction Wiley-Vch			
Complementary	<i>Molecular visualization programs:</i> Rasmol: http://www.umass.edu/microbio/rasmol Swiss-PdbViewer:			
	http://www.expasy.ch/spdbv/ MOLMOLhttp://www.mol.biol.ethz.ch/wuthrich/software/molmol			
	Cn3Dhttp://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml Chime			
	http://www.umass.edu/microbio/chime <i>Modeling and prediction servers:</i>			
	http://expasy.ch/swissmod/ ThePredictProtein Server http://ww.embl-heidelberg.de/predictprotein/predictprotein.html			
	Center for MolecularModeling: http://cmm.info.nih.gov/modeling/ GRAMM: http://reco3.musc.edu/gramm/			
	PQS(Probable Quat. Structure): http://msd.ebi.ac.uk/services/quaternary/quaternary.htmlMolecular visualization			
	programs: Rasmol: http://www.umass.edu/microbio/rasmol Swiss-PdbViewer: http://www.expasy.ch/spdbv/			
	MOLMOLhttp://www.mol.biol.ethz.ch/wuthrich/software/molmol			
	Cn3Dhttp://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml Chime http://www.umass.edu/microbio/chimeModeling			
	and prediction servers: SWISS-MODEL http://expasy.ch/swissmod/ ThePredictProtein Server			
	http://ww.embl-heidelberg.de/predictprotein/predictprotein.html Center for MolecularModeling:			
	http://cmm.info.nih.gov/modeling/ GRAMM: http://reco3.musc.edu/gramm/ PQS(Probable Quat. Structure):			
	http://msd.ebi.ac.uk/services/quaternary/quaternary.html			

Recommendations
Subjects that it is recommended to have taken before
Molecular Techniques/610441002
Subjects that are recommended to be taken simultaneously
Protein Structure and Dynamics/610441011
Proteomics/610441013
Genomics /610441014
Subjects that continue the syllabus
Project/610441022
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.