

		Teaching Gui	de		
	Identifying E	Data			2022/23
Subject (*)	Genetic Variation Mechanisms			Code	610441005s
Study programme	Máster Universitario en Bioloxía Mole	ecular, Celular e X	(enética (semi	presencial)	
		Descriptors			
Cycle	Period	Year		Туре	Credits
Official Master's Degre	e 1st four-month period	First		Obligatory	3
Language	SpanishEnglish		I		
Teaching method	Hybrid				
Prerequisites					
Department	Bioloxía				
Coordinador	Gonzalez Tizon, Ana Maria		E-mail	ana.gonzalez.ti	zon@udc.es
Lecturers	Gonzalez Tizon, Ana Maria		E-mail	ana.gonzalez.ti	zon@udc.es
Web	cie48.udc.es				
General description	It aims to deepen the knowledge of t	he various mecha	nisms that ger	nerate genetic variat	ion, both in the aspect of their
	molecular basis and in their impact o	n genomes and e	volution.		

	Study programme competences / results
Code	Study programme competences / results
A3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A6	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
A12	Skills to understand, detect and analyze the genetic variation, knowing genotoxicity processes and methodologies for its evaluation, as
	well as carrying out diagnosis and genetic risk studies.
A13	Skills to become a professional in health, pharmacy, veterinary, animal production, biotechnology or food sectors.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B2	Skills of decision making for the problem solving: that are able to apply theoretical knowledges and practical acquired in the formulation of
	biological problems and the looking for solutions.
B3	Skills of management of the information: that are able to gather and to understand relevant information and results, obtaining conclusions
	and to prepare reasoned reports on scientific and biotechnological questions
B5	Ability to draft, represent, analyze, interpret and present technical documentation and relevant data in the field of the branch of knowledge
	of the master's degree in the native language and at least in another International diffusion language.
B7	Personal progress skills : that are able to learn from freelance way, adapting to new situations, developing necessary qualities as the
	creativity, skills of leadership, motivation for the excellence and the quality.
B9	Skills of preparation, show and defense of a work.
B11	That students know how to apply the knowledge acquired and their ability to solve problems in new or little-known environments within
	broader (or multidisciplinary) contexts related to their area of ??study
B12	That students are able to integrate knowledge and face the complexity of formulating judgments based on information, which, being
	incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and
	judgments
B13	That students know how to communicate their conclusions and the knowledge and ultimate reasons that support them to specialized and
	non-specialized audiences in a clear and unambiguous way
B14	That students possess the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous
C1	Ability to express oneself correctly, both orally and in writing, in the official languages of the autonomous community
C2	Ability to know and use appropriately the technical terminology of the field of knowledge of the master, in the native language and in
	English, as a language of international diffusion in this field
C3	Using ICT in working contexts and lifelong learning.
C4	Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C5	Understanding the importance of entrepreneurial culture and the useful means for enterprising people.

C8

Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning outcomes			
Learning outcomes	Study	Study programme	
	competences /		es/
		results	
Comprehensive reading of scientific texts related to the module subjects	AR3	BR1	CC1
Ability to expose the current state of knowledge within this field	AR6	BR2	CC2
Critical ability to evaluate hypotheses and interpret results	AR11	BR3	CC3
Understanding cell structure and function from an interdisciplinary vision in which Cell Biology, classical Cytology, Genetics	AR12	BR5	CC4
and Molecular Biology converge	AR13	BR7	CC5
Understanding of the biochemical and physiological processes that allow signaling between cells and with structural elements,		BR9	CC8
as well as the causative aspects of pathologies related to alterations in cell signaling and the tools used for your study		BC2	
Know the experimental techniques to access the study of the molecular mechanisms of regulation of gene expression as well		BC3	
as the molecular machinery involved and their regulatory systems		BC4	
To know the characteristics of the proteins and complexes involved in the regulation of gene expression, their interaction with		BC5	
genetic material and the enzymatic reactions that modulate their activity.			
To know the mechanisms that cause genetic variability			

	Contents
Торіс	Sub-topic
Unit 1. Genetic variation: mutation	Genetic variation and its significance.
	Origin and consequences of mutation.
	Chromosome rearrangements.
	Mutation rates.
	Reversion and supression.
Unit 2. Mobile DNA	Abundance in the genomes.
	Classification of transposable elements. Proliferation
	Molecular evolution. Impact on the genomes. Domestication
Unit 3.Genetic recombination	Recombination rates.
	Gene conversion.
	Sexual dimorphism and recombination rate, crossing-over and gene conversion.
	Gene conversion bias.
Unit 4. Evolution of scientific thought regarding the origin of	Cellular evolution: the path "bumpy" to "who knows where."
genetic variability. Woese's contribution.	History of evolutionary thought. State of Microbiology (and Virology) during most of the
	20th century. Carl Woese. LUCA. Generation of genetic variability in the beginning of
	life.
Unit 5. Microbial evolution in the genomics era.	The turbulent dynamics of microbial evolution. Damned concepts of classical genetics:
	genetic elements with a Lamarckian flavor? Evolution of Evolvability?
Unit 6. The mysterious world of viruses.	Are viruses alive? Evolution of viruses and viral replicons. Viral Population Dynamics
	Models

Planning					
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours	
	Results	(in-person & virtual)	work hours		
Guest lecture / keynote speech	A6 A11 A12 A13 B1	0	23	23	
	B2 C2 C3				
Long answer / essay questions	A3 B2 C2 C3	2	11	13	

A6 A11 A12 A13 B1	1	14	15
B2 B3 B5 B7 B9 B11			
B12 B13 B14 C1 C2			
C4 C5 C8			
A3 C3	10	10	20
	4	0	4
	B2 B3 B5 B7 B9 B11 B12 B13 B14 C1 C2 C4 C5 C8	B2 B3 B5 B7 B9 B11 B12 B13 B14 C1 C2 C4 C5 C8	B2 B3 B5 B7 B9 B11 B12 B13 B14 C1 C2 C4 C5 C8

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	In each class the contents of the program will be exposed. The teachers' presentations will be incorporated into the Moodle
keynote speech	platform.
	CONTINGENCY PLAN: the lectures will be held via TEAMS at the previously approved official hours
Long answer / essay questions	Written test in which any aspect addressed in the theoretical and practical teaching will be dealt with.
	CONTINGENCY PLAN: PRESENTIAL students will take the exam via TEAMS on the date and times previously established and approved
Document analysis	Students will read a series of research articles related to any aspect of the syllabus. This work will be reflected in a power point
	elaboration that will be presented and exhibited in the classroom.
	CONTINGENCY PLAN: students will present their work via TEAMS, in case of confinement.
	All works will be uploaded to the Moodle platform, after review by the subject teachers.
Laboratory practice	The laboratory practices are the following:
	Practice 1: PCR amplification of DNA sequences
	Practice 2: electrophoresis of PCR products
	Practice 3: Work with bioinformatics tools for the analysis of the sequences of the PCR products
	CONTINGENCY PLAN: in case of confinement, the practices will be reconverted or replaced in computer analysis working
	with different genomic sequences.

	Personalized attention
Methodologies	Description
Document analysis	The students will be able to attend the tutorials in the previously established schedules or agreed with the students of the
	subject. These tutorials may be individual or group via TEAMS, email or in person.
	CONTINGENCY PLAN: in case of confinement, they will be carried out through TEAMS individually, or by email.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	A3 C3	Attendance to lab sessions and execution of exercises proposed by the teacher will be	15
		graded. For the monitoring and grading of learning, students must prepare and	
		present a practical notebook with its introduction, materials and methods, description	
		of results and conclusions. In this activity the acquisition of competence A5 will be	
		evaluated.	

Document analysis	A6 A11 A12 A13 B1	Os estudantes leerán varios artigos de investigación e realizarán unha presentación	15
	B2 B3 B5 B7 B9 B11	en power point de 10-12 minutos de duración	
	B12 B13 B14 C1 C2		
	C4 C5 C8		
Long answer / essay	A3 B2 C2 C3	Test de resposta múltiple sobre os contenidos teóricos e prácticos. Cando menos o	70
questions		50% da proba será en inglés. Nesta actividade avaliarase a adquisición das	
		competencias A5, A9, A16.	

Assessment comments

Laboratory practices are mandatory.

To pass the subject, the student must obtain at least 50% of the score assigned to the essay / development test and another 50% of that of the laboratory practices.

It will be considered NOT PRESENTED when the student has not participated in more than 20% of the scheduled assessable activities. This criterion applies to the January call. In the July call, to obtain the grade NOT PRESENTED, it will be enough to not appear for the objective tests (theory and practical exams).

For the evaluation of the July call, the student, in addition to the corresponding exams, must present the power point presentation of the oral presentation. In the event that this activity was already evaluated in the January call, the grade obtained will remain for July.

For students with part-time dedication and exemption from attendance, the teacher will adopt the measures that he deems appropriate to avoid damaging her grade (flexibility in the delivery dates of the assessable activities). Instead of the oral presentation, these students will make a 2-3 page summary that must be delivered in pdf to the teacher for evaluation.

	Sources of information
Basic	- Weiner, M. P., Gabriel, S., and Claibo, J. (2007). Genetic variation: a laboratory manual. Cold Spring Harbor
	Laboratory Press
	- Meyers, R. A. (2007). Genomics and genetics: from molecular details to analysis and techniques. Wiley-VCH
	- Gibson, G. (2009). A primer of genome science. Sinauer Associates
	- N L Craig et al. (2002). Mobile DNA II. ASM Press
	- E.C. Friedberg et al. (2006). DNA repair and mutagenesis. Second edition. ASM Press
	The students will receive from the teachers of the subject recent webgraphy and review articles to properly prepare the
	subject. They will be hosted (bibliography and webgraphy) on the Moodle platform. The students will receive from the
	teachers of the subject recent webgraphy and review articles to properly prepare the subject. They will be hosted
	(bibliography and webgraphy) on the Moodle platform.
Complementary	- Hartl, D. L. (2009). Genetics: analysis of genes and genomes. Jones and Bartlett
	- J. M. Coffin et al. (1997). Retroviruses. Cold Spring Harbor Laboratory Press
	- R Scott Hawley, MY Walker (2003). Advanced genetic analysis. Finding meaning in a genome Blackwell Publishing
	- Watson et al. (2004). Molecular Biology of the gene. Fifth edition. Pearson-Cummings

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

Attendance to the master classes enables the treatment of doubts or questions that may arise in the course of the explanations, facilitating the understanding of the topics. The study must contemplate the habitual consultation of at least the recommended bibliography. Study and group work favors understanding and develops a critical spirit. Doubts and difficulties raised by any aspect of the subject must be resolved as soon as possible, raising them in in-person classes or attending individualized tutorials. Given that part of the recommended bibliography for this subject is in English, it is advisable to have knowledge of this language, at least at the level of comprehension of written texts.Green Campus Program of the Faculty of Sciences: To help achieve a sustainable environment and comply with point 6 of the "Environmental Declaration of the Faculty of Sciences (2020)", documents requested as part of the course will be turned in electronically. If printed, plastic covers will not be used, they will be printed on both sides on recycled paper. Drafts will be avoided.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.