

		Teaching Guide				
	Identifying	g Data		2019/20		
Subject (*)	Techniques of Characterization of Materials and Biointerphases Code		610509102			
Study programme	Mestrado Universitario en Investigación Química e Química Industrial (Plan 2017)					
		Descriptors				
Cycle	Period	Year	Туре	Credits		
Official Master's Degree	e Yearly	First	Obligatory	3		
Language	SpanishGalicianEnglish					
Teaching method	Face-to-face					
Prerequisites						
Department	Química					
Coordinador	Castro Garcia, Socorro	E-mail	socorro.castro.g	garcia@udc.es		
Lecturers	Castro Garcia, Socorro	E-mail	socorro.castro.g	garcia@udc.es		
	Platas Iglesias, Carlos		carlos.platas.igl	carlos.platas.iglesias@udc.es		
Web						
General description	This course includes a description	of the fundamentals and main	applications of various of	characterization techniques rela		
	to Materials Science and which (in many cases) have not been taught in the Degree in Chemistry. These contents are fundamental to address other optional subjects of the master and, in particular, module 5 - Nanochemistry and New Materials.					
	In addition, also includes a part of	computational techniques in wh	nich will be used compu	ter programs that allow the		
	visualization of molecules. These contents are essential for any chemist.					

	Study programme competences / results
Code	Study programme competences / results
A1	Define concepts, principles, theories and specialized facts of different areas of chemistry.
A2	Suggest alternatives for solving complex chemical problems related to the different areas of chemistry.
A3	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A4	Apply materials and biomolecules in innovative fields of industry and chemical engineering.
A7	Operate with advanced instrumentation for chemical analysis and structural determination.
A9	Promote innovation and entrepreneurship in the chemical industry and in research.
B2	Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary)
	contexts related to their field of study.
B3	Students should be able to integrate knowledge and handle complexity, and formulate judgments based on information that was
	incomplete or limited, include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgments.
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous.
B7	Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a
	research topic
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
B11	Apply correctly the new technologies to gather and organize the information to solve problems in the professional activity.
C1	CT1 - Elaborar, escribir e defender publicamente informes de carácter científico e técnico
C2	CT2 - Traballar en equipo e adaptarse a equipos multidisciplinares.
C3	CT3 - Traballar con autonomía e eficiencia na práctica diaria da investigación ou da actividade profesional.
C4	CT4 - Apreciar o valor da calidade e mellora continua, actuando con rigor, responsabilidade e ética profesional.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

The student will be able to use computer programs that allow him to visualize molecules.	AC1	BC2	CC1
The student will understand the fundamentals of some basic techniques of solid state analysis.	AC2	BC3	CC2
The student will be able to interpret the results of the most common techniques of characterization of solids.	AC3	BC5	CC3
The student will be able to select the techniques of characterization of solids most appropriate for solving specific problems.	AC4	BC7	CC4
	AC7	BC10	
	AC9	BC11	

Contents			
Торіс	Sub-topic		
Unit I.	Visualization of molecules.		
Unit II.	Thermal analysis of materials: thermogravimetry (TGA), differential scanning		
	calorimetry (DSC), differential thermal analysis (DTA), isothermal titration calorimetry		
	(ITC).		
Unit III.	Diffraction techniques: powder X-ray diffraction (PXRD).		
Unit IV.	Modern Microscopic Techniques: Scanning Tunneling Microscopy (STM), Atomic		
	Force Microscopy (AFM).		
Unit V.	Spectroscopy for characterization of surfaces and interfaces: surface plasmon		
	resonance (SPR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and		
	Auger spectroscopy.		
Unit VI.	Characterization of colloidal dispersions: dynamic light scattering (DLS) and zeta		
	potential.		

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A9 B2 B10	12	0	12
Seminar	A2 A4 A3 B3 B5 C2	4	0	4
	C4			
Supervised projects	C3	2	0	2
ICT practicals	A1 B5 C3	4	0	4
Problem solving	A7 B7 B11 C1	20	0	20
Document analysis	B10 B11 C3 C4	0	26	26
Objective test	A1 A2 B3 B5 C1 C4	2	0	2
Laboratory practice	A7 B5 C3	5	0	5
Personalized attention		0	0	0

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Interactive lectures by the teacher, with active participation of the students.
keynote speech	
Seminar	Seminars with master's or guest professors, from other institutions, as well as with experts in the field. They will be interactive
	sessions.
Supervised projects	Individual or small group tutoring.
ICT practicals	Practical classes in computer classrooms.
Problem solving	Solution to problems or development of short projects, proposed by the teacher, or by the student himself (if deemed
	appropriate).
Document analysis	Personal study based on the different sources of information.
Objective test	One or several tests for the verification of the acquisition of knowledge and acquisition of the skills and attitudes proposed for
	this subject.

Laboratory practice Characterization of materials.

	Personalized attention		
Methodologies	Description		
Problem solving	Individual or group tutoring.		
Objective test			

		Assessment	
Methodologies	Methodologies Competencies / Description		Qualification
	Results		
Seminar	A2 A4 A3 B3 B5 C2	LECTURES, SEMINARS, PROBLEM SOLVING: compute together (25% of the overall	0
	C4	rating)	
Guest lecture /	A1 A9 B2 B10	LECTURES, SEMINARS, PROBLEM SOLVING: compute together (25% of the overall	0
keynote speech		rating)	
Problem solving	A7 B7 B11 C1	LECTURES, SEMINARS, PROBLEM SOLVING: compute together (25% of the overall	25
		rating)	
Objective test	A1 A2 B3 B5 C1 C4	(75% of the overall rating)	75

Assessment comments

The evaluation

of this subject will be done through continuous assessment and the

completion of a final exam, with access to the exam being subject

to participation in at least 80% of the compulsory teaching

activities (theoretical classes, seminars and tutorials).

The

teacher will verify the attendance to the classes according to the

system of control officially established in the

Center/University.Absences must be documented. Excused absences will

count as attendance to teaching activities in order to attend the exam.

Sources of information		
Basic		
Complementary	- J.M. Hollas: "Modern Spectroscopy"; 4th ed.; John Wiley&Sons, 2004 S.R. Morrison: "The Chemical Physics	
	of Surfaces"; 2nd ed.; Plenum Press, 1990 F. MacRitchie: "Chemistry at Interfaces"; Academic Press, 1990 D.	
	Myers: "Surfaces, Interfaces and Colloids: Principles and Applications"; VCH, 1999 G. Cao: "Nanostructures and	
	Nanomaterials: Syntesis, Properties and Applications". Imperial College Press, 2004 S.E. Lyshevski (ed.): "Dekker	
	Encyclopedia of nanoscience and nanotechnology" (7 volumes), 3ª Edición. CRC Press, 2014 John P. Sibilia: ?A	
	guide to materials characterization and chemical analysis?. VCH Publishers, 1998 J. Bermúdez Polonio: "Métodos	
	de difracción de rayos X. Principios y aplicaciones". Editorial Pirámide, 1981 C. Hammond: "The basics of	
	Crystallography and Diffraction", 4th ed.; International Union of Crystallography, Oxford University Press, 2015 B. D.	
	Cullity S.R. Stock: ?Elements of X-Ray Diffraction? 3rd ed.; Prentice Hall 2014- C. Giacovazzo (ed.): ?Fundamentals	
	of Crystallography? 3rd ed.; International Union of Crystallography, Oxford University Press, 2011. In addition,	
	complementary texts (articles, web pages, specific texts) should be recommended for each unit.	

Recommendations	
Subjects that it is recommended to have taken before	
Subjects that are recommended to be taken simultaneously	
Subjects that continue the syllabus	

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.