

|                     |                                                                                                                 | Teachin                                            | g Guide               |                          |                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|--------------------------|-------------------------------------|
|                     | Identifyin                                                                                                      | g Data                                             |                       |                          | 2017/18                             |
| Subject (*)         | Physical Chemistry 3                                                                                            |                                                    | Code                  | 610G01018                |                                     |
| Study programme     | Grao en Química                                                                                                 |                                                    |                       |                          | '                                   |
|                     |                                                                                                                 | Descr                                              | iptors                |                          |                                     |
| Cycle               | Period                                                                                                          | Ye                                                 | ar                    | Туре                     | Credits                             |
| Graduate            | 1st four-month period                                                                                           | Th                                                 | ird                   | Obligatoria              | 6                                   |
| Language            | SpanishEnglish                                                                                                  |                                                    |                       |                          |                                     |
| Teaching method     | Face-to-face                                                                                                    |                                                    |                       |                          |                                     |
| Prerequisites       |                                                                                                                 |                                                    |                       |                          |                                     |
| Department          | Química                                                                                                         |                                                    |                       |                          |                                     |
| Coordinador         | Herrero Rodriguez, Roberto                                                                                      | Herrero Rodriguez, Roberto E-mail r.herrero@udc.es |                       |                          |                                     |
| Lecturers           | Barriada Pereira, José Luis                                                                                     |                                                    | E-mail                | jose.barriada@u          | idc.es                              |
|                     | Herrero Rodriguez, Roberto                                                                                      |                                                    |                       | r.herrero@udc.e          | S                                   |
| Web                 | campusvirtual.udc.es/moodle                                                                                     |                                                    |                       |                          |                                     |
| General description | Physical Chemistry consists in the                                                                              | e study of funda                                   | amental physical p    | rinciples that govern th | e properties and behavior of        |
|                     | chemical systems. A chemical systems                                                                            | stem can be stu                                    | udied from a micro    | scopic or a macroscopi   | ic point of view. In this course of |
|                     | Physical Chemistry the methodology to study the macroscopic equilibrium is introduced (Chemical Thermodynamics) |                                                    |                       |                          |                                     |
|                     | The subjects taught in this course                                                                              | are the essen                                      | tial theoretical four | idations for the subseq  | uent subjects in Physical           |
|                     | Chemistry. They are also a frame                                                                                | work for all oth                                   | er branches of che    | mistry that necessarily  | apply many of the concepts          |
|                     | studied in this course in the devel                                                                             | opment of their                                    | r specific programs   |                          |                                     |

|      | Study programme competences / results                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences / results                                                                                             |
| A1   | Ability to use chemistry terminology, nomenclature, conventions and units                                                         |
| A3   | Knowledge of characteristics of the different states of matter and theories used to describe them                                 |
| A5   | Understanding of principles of thermodynamics and its applications in chemistry                                                   |
| A14  | Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry                              |
| A15  | Ability to recognise and analyse new problems and develop solution strategies                                                     |
| A16  | Ability to source, assess and apply technical bibliographical information and data relating to chemistry                          |
| A21  | Understanding of qualitative and quantitative aspects of chemical problems                                                        |
| B2   | Effective problem solving                                                                                                         |
| B3   | Application of logical, critical, creative thinking                                                                               |
| C3   | Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life |

| Learning outcomes                                                            |      |          |      |
|------------------------------------------------------------------------------|------|----------|------|
| Learning outcomes                                                            | Stud | y progra | amme |
|                                                                              | con  | npetenc  | es/  |
|                                                                              |      | results  |      |
| To know the principles of thermodynamics and their applications in chemistry | A1   | B2       | C3   |
|                                                                              | A3   | B3       |      |
|                                                                              | A5   |          |      |
|                                                                              | A14  |          |      |
|                                                                              | A15  |          |      |
|                                                                              | A16  |          |      |
|                                                                              | A21  |          |      |



| To solve complex problems through the use of spreadsheets.                                                        | A1  | B2 | C3 |
|-------------------------------------------------------------------------------------------------------------------|-----|----|----|
|                                                                                                                   | A14 | B3 |    |
|                                                                                                                   | A15 |    |    |
|                                                                                                                   | A16 |    |    |
|                                                                                                                   | A21 |    |    |
| To adquire skills in literature search of real and research applications about the subject contents of the course | A14 | B3 | C3 |
|                                                                                                                   | A15 |    |    |
|                                                                                                                   | A16 |    |    |
|                                                                                                                   | A21 |    |    |

|                                                      | Contents                                                                                 |
|------------------------------------------------------|------------------------------------------------------------------------------------------|
| Торіс                                                | Sub-topic                                                                                |
| 1. Introduction to Chemical Thermodynamics.          | Previous concepts and mathematical properties                                            |
| 2. The principles of Thermodynamics.                 | First law: internal energy, enthalpy, heat capacities. Second law: entropy, calculating  |
|                                                      | the entropy change in simple systems.                                                    |
| 3. Thermodynamic potentials and evolution of systems | Equilibrium conditions in closed systems: the Gibbs and Helmholtz functions.             |
|                                                      | Thermodynamic relationships for a closed system. Applications: thermodynamic             |
|                                                      | equations of state, the difference between the heat capacities, the Joule-Thomson        |
|                                                      | coefficient.                                                                             |
| 4. Thermodynamics standard reaction functions        | Standard enthalpy: Kirchhoff's and Hess's law. Standard Entropy: the third law of        |
|                                                      | thermodynamics, conventional entropy determination. Standard Gibbs energy. Using         |
|                                                      | thermodynamic tables.                                                                    |
| 5. Thermodynamics of systems of variable composition | The chemical potential. Partial molar properties. Material equilibrium conditions: phase |
|                                                      | equilibrium and chemical equilibrium.                                                    |
| 6. Gas state thermodynamics                          | The ideal gas: chemical potential and properties, ideal gas mixture. Real gases:         |
|                                                      | equation of state and fugacity, fugacity calculation.                                    |
| 7. Phase equilibria in systems of one component      | The phase rule. Phase diagram for one-component systems. Clapeyron and                   |
|                                                      | Clausius-Clapeyron equations. Classification of phase transitions.                       |
| 8. Solutions                                         | Ideal solution: Raoult's Law. Ideally dilute solution: Henry's Law. Mixing functions.    |
|                                                      | Nonideal solutions of nonelectrolytes: activity and activity coefficients, the           |
|                                                      | Gibbs-Duhem equation, excess functions. Solutions of electrolytes: the activity          |
|                                                      | coefficient of ionic species.                                                            |
| 9. Phase equilibria in multicomponent systems        | Liquid-vapor equilibrium: ideal solution at constant T and P constant, fractional        |
|                                                      | distillation, azeotropic mixtures. Liquid-liquid equilibrium: miscibility. Solid-liquid  |
|                                                      | equilibrium: temperature-composition diagrams, simple eutectic, compound formation       |
|                                                      | with congruent and incongruent melting, thermal analysis. Solution-crystalline solid     |
|                                                      | equilibrium. Colligative properties: freezing point depression, boiling point elevation, |
|                                                      | osmotic pressure, vapor-pressure lowering. Nernst's distribution law.                    |
| 10. Chemical equilibrium                             | Chemical equilibrium in gas mixtures: the equilibrium constant, changes in chemical      |
|                                                      | equilibrium-Le Chatelier's principle. Chemical equilibrium in solution. Chemical         |
|                                                      | equilibrium with pure solids and liquids.                                                |
| 11. Surface thermodynamics                           | The interface: surface tension. Curved interfaces: capillary rise. Adsorption on solid:  |
|                                                      | physisorption and chemisorption, adsorption isotherms.                                   |
| 12. Electrochemical equilibrium                      | Electrochemical systems. Thermodynamics of electrochemical systems: the                  |
|                                                      | electrochemical potential. Galvanic and electrolytic cells. Nernst equation and          |
|                                                      | standard electrode potentials. Types of reversible electrodes. Liquid junction           |
|                                                      | potentials. Determination of thermodynamic parameters.                                   |

Planning



| Methodologies / tests           | Competencies /      | Teaching hours        | Student?s personal | Total hours |
|---------------------------------|---------------------|-----------------------|--------------------|-------------|
|                                 | Results             | (in-person & virtual) | work hours         |             |
| Guest lecture / keynote speech  | A1 A3 A5 B3         | 28                    | 56                 | 84          |
| Problem solving                 | A1 A5 A14 A15 A21   | 11                    | 33                 | 44          |
|                                 | B2 B3               |                       |                    |             |
| ICT practicals                  | A14 B2 B3 C3        | 0.5                   | 1.5                | 2           |
| Critical bibliographical        | A16 C3              | 0.5                   | 1.5                | 2           |
| Mixed objective/subjective test | A1 A3 A5 A14 A21 B2 | 2                     | 0                  | 2           |
|                                 | B3                  |                       |                    |             |
| Speaking test                   | A3 A5 A14 B3        | 0                     | 10                 | 10          |
| Mixed objective/subjective test | A1 A3 A5 A14 A15    | 4                     | 0                  | 4           |
|                                 | A21 B2 B3           |                       |                    |             |
| Personalized attention          |                     | 2                     | 0                  | 2           |

(\*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

|                      | Methodologies                                                                                                                    |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Methodologies        | Description                                                                                                                      |
| Guest lecture /      | Lectures, where the theoretical concepts will be introduced                                                                      |
| keynote speech       |                                                                                                                                  |
| Problem solving      | Seminars in small groups where it will be shown the application of the theoretical contents from the lectures into problem       |
|                      | solving                                                                                                                          |
| ICT practicals       | Practical exercises where students will solve complex problems using computer programs                                           |
| Critical             | Students will be taught to do bibliographic search. They will be asked to perform searches about topics related with the         |
| bibliographical      | subject.                                                                                                                         |
|                      | Reading of papers related with topics from the subject will be also proposed                                                     |
| Mixed                | Students will be asked to solve a collection of problems which combines the theoretical concepts and their application.          |
| objective/subjective |                                                                                                                                  |
| test                 |                                                                                                                                  |
| Speaking test        | Students will attent to two individual tutorial sesions where they will present test questions developed by themselves about the |
|                      | theoretical concepts of the course. Those questions will be discussed with the lecturer.                                         |
| Mixed                | A final test will be done at the end of the semester. Students will be asked solving problems on their own                       |
| objective/subjective |                                                                                                                                  |
| test                 |                                                                                                                                  |

|                 | Personalized attention                                                                                                      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|
| Methodologies   | Description                                                                                                                 |
| ICT practicals  | These works are proposed in the class and students must solve them supported by individual tutorials with the teacher.      |
| Critical        |                                                                                                                             |
| bibliographical | Part-time students and those with special academic leave permission will have access to the materials of the subject in the |
| Problem solving | moodle application. They could ask for presential or email tutorials when necessary while they prepare for the final test.  |
| Speaking test   |                                                                                                                             |
|                 |                                                                                                                             |
|                 |                                                                                                                             |

|               |                | Assessment  |               |
|---------------|----------------|-------------|---------------|
| Methodologies | Competencies / | Description | Qualification |
|               | Results        |             |               |



| Mixed                | A1 A3 A5 A14 A15    | Final examination of the contents of the subject based on the autonomous, individual           | 100 |
|----------------------|---------------------|------------------------------------------------------------------------------------------------|-----|
| objective/subjective | A21 B2 B3           | resolution of problems.                                                                        |     |
| test                 |                     | Those students that pass the first partial exam will need to be evaluated of the second        |     |
|                      |                     | part of the subject in the final test. It is required to obtain 5 out of 10 to successfully    |     |
|                      |                     | pass the exam.                                                                                 |     |
|                      |                     | Students that fail in the first partial exam will be evaluated for the whole contents of       |     |
|                      |                     | the subject. It is also required to obtain 5 out of 10 to successfully pass the exam.          |     |
|                      |                     | Marks obtained in both exams constitute the 100% of the final qualification.                   |     |
|                      |                     |                                                                                                |     |
| Mixed                | A1 A3 A5 A14 A21 B2 | It will be assessed the individual contribution to the resolution of all activities. This test | 0   |
| objective/subjective | B3                  | constitutes a partial exam of the matter. It is required to obtain 5 out of 10 to              |     |
| test                 |                     | successifully pass the exam.                                                                   |     |

## Assessment comments

The student who engages in any of the two tests will be considered to have attended on the subject at the time of the final mark. The qualifications obtained will correspond to January (first opportunity).

Exceptionally, the rating of both opportunities will be made with the final test, scoring 10 out of 10, for those student at part time or with special academic leave permission.

The rating of the second opportunity will be made only with a final test, scoring 10 out of 10.

Honors grade: priority is given in the first opportunity. Honors grade may only be granted in the second opportunity if their number have not be exhausted in the first opportunity final qualifications. Should it be more candidates to honors grade than honors available, allocation will be done through a extraordinary exam.

|               | Sources of information                                                                                       |
|---------------|--------------------------------------------------------------------------------------------------------------|
| Basic         | §LEVINE, I.N. (2008). Physical Chemistry. 6th Ed. McGraw-Hill.§ATKINS, P.W and de Paula, J. (2010). Physical |
|               | Chemistry. 9 Ed. Oxford University Press                                                                     |
| Complementary | § DENBIGH, K. (1981). The principles of chemical equilibrium. Cambridge University Press§ McQUARRIE, D.A.,   |
|               | SIMON, J.D. (1997). Physical Chemistry. Univ. Science Books.§ KLOTZ, I.M., ROSENBERG, R.M. (2008) Chemical   |
|               | Thermodynamics 7th Ed. Wiley                                                                                 |

| Subjects that it is recommended to have taken before     |  |
|----------------------------------------------------------|--|
|                                                          |  |
| Mathematics 1/610G01001                                  |  |
| Mathematics 2/610G01002                                  |  |
| Physics 1/610G01003                                      |  |
| Physics 2/610G01004                                      |  |
| General Chemistry 2/610G01008                            |  |
| Subjects that are recommended to be taken simultaneously |  |
| Experimental Physical Chemistry/610G01019                |  |
| Subjects that continue the syllabus                      |  |
| Experimental Physical Chemistry/610G01019                |  |
| Advanced Physical Chemistry/610G01020                    |  |
| Other comments                                           |  |

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.