

		Teaching Guide			
	Identifyi	ng Data		2020/21	
Subject (*)	Inorganic Chemistry 3		Code	610G01023	
Study programme	Grao en Química				
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Graduate	1st four-month period	Third	Obligatory	6	
Language	SpanishGalicianEnglish		<u>'</u>	'	
Teaching method	Hybrid				
Prerequisites					
Department	Química				
Coordinador	Esteban Gomez, David E-mail		david.esteban@u	david.esteban@udc.es	
Lecturers	Castro Garcia, Socorro		socorro.castro.ga	arcia@udc.es	
	Esteban Gomez, David		david.esteban@u	udc.es	
	Platas Iglesias, Carlos		carlos.platas.igle	sias@udc.es	
	Señaris Rodriguez, Maria Antoni	a	m.senaris.rodrigu	uez@udc.es	
Web		<u>'</u>	<u>'</u>		
General description					
	?Inorganic Chemistry 3? is a con	npulsory subject in the 1st se	mester of the 3rd year of the	Degree in Chemistry. This	
	subject belongs to the module "Inorganic Chemistry" and is dedicated to the study of Coordination Compounds and				
	Inorganic Solids, both from the s	andpoint of the structures an	d bonding, as the reactivity	of the former. For the study of thi	
	subject is essential to have well-established skills of ?Inorganic Chemistry 1?, ?Inorganic Chemistry 2?, ?Physical				
	Chemistry 1? and ?Physical Che	mistry 2? (all of the 2nd year)). ?Inorganic Chemistry 3? s	erves as the foundation for	
	?Inorganic Chemistry 4? (3rd year	ar, 2nd semester), ?Advanced	d Inorganic Chemistry? and	?Materials Science? courses	
	(both of the 4th year).				

Contingency plan

1. Modifications in the contents.

In principle, the contents are maintained in their entirety. If necessary for reasons of force majeure, it will be possible to opt for a more general presentation, which in any case will cover all the most relevant aspects of the subject.

2. Methodologies

* Teaching methodologies that are maintained

The methodologies will be maintained, but will be carried out in "online mode", i.e. using the TIC tools available to the institution. In the case that part of the students cannot connect and follow the classes in real time, asynchronous methods will be used (e-mail, recordings of the exhibition sessions, more personalized tutorials...).

* Teaching methodologies that change

Objective tests will be online tests that will be conducted using Moodle or equivalent tools, tracked by TEAMS.

3. Mechanisms of personalized attention to students.

Students will receive tutorials through the Teams platform or by corporate email.

4. Modifications in the evaluation.

If all students could continue with the non-presential teaching without difficulty, it will be evaluated in the same way as in the presential teaching.

Students who are unable to follow synchronous activities online will be assessed for equivalent activities performed asynchronously.

* Evaluation observations:

None.

5. Modifications to the bibliography or webgraphy.

There are no changes in the bibliography / webgraphy.

	Study programme competences / results
Code	Study programme competences / results
A1	Ability to use chemistry terminology, nomenclature, conventions and units
А3	Knowledge of characteristics of the different states of matter and theories used to describe them
A4	Knowledge of main types of chemical reaction and characteristics of each
A5	Understanding of principles of thermodynamics and its applications in chemistry
A6	Knowledge of chemical elements and their compounds, synthesis, structure, properties and reactivity
A8	Knowledge of principles of quantum mechanics and atomic and molecular structure
A9	Knowledge of structural characteristics of chemical and stereochemical compounds, and basic methods of structural analysis and
	research
A10	Knowledge of chemical kinetics, catalysis and reaction mechanisms
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A15	Ability to recognise and analyse new problems and develop solution strategies
A16	Ability to source, assess and apply technical bibliographical information and data relating to chemistry
A24	Ability to explain chemical processes and phenomena clearly and simply
A25	Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
B1	Learning to learn
B2	Effective problem solving
В3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
B5	Teamwork and collaboration
В7	Effective workplace communication

C1	Ability to express oneself accurately in the official languages of Galicia (oral and in written)
C2	Oral and written proficiency in a foreign language
C6	Ability to assess critically the knowledge, technology and information available for problem solving
C7	Acceptance as a professional and as a citizen of importance of lifelong learning
C8	Understanding role of research, innovation and technology in socio-economic and cultural development

Learning outcomes				
Learning outcomes	Stud	y progra	amme	
		competences /		
		results		
To know the structure and the nature of chemical bonding in coordination compounds.	A1	B1	C1	
	A3	B2	C2	
	A6	В3	C6	
	A8	B4	C7	
	A9	B5	C8	
	A14	B7		
	A15			
	A16			
	A24			
	A25			
To know the thermodynamic aspects related to the stability of coordination compounds.	A1	B1	C1	
	A5	B2	C2	
	A9	В3	C6	
	A14	B4	C7	
	A15	B5	C8	
	A16	B7		
To know the most important reaction mechanisms for coordination compounds.	A1	B1	C1	
	A4	B2	C2	
	A9	В3	C6	
	A10	B4	C7	
	A14	B5	C8	
	A15	B7		
	A16			
To know the structure of inorganic solids.	A1	B1	C1	
	A3	B2	C2	
	A6	В3	C6	
	A9	B4	C7	
	A14	B5	C8	
	A15	B7		
	A16			
To know the microstructure of inorganic solids.	A1	B1	C1	
	A6	B2	C2	
	A9	В3	C6	
	A14	B4	C7	
	A15	B5	C8	
	A16	B7		
	A24			
	A25			

To know the nature of chemical bonding in inorganic solids.	A1	B1	C1
	А3	B2	C2
	A5	В3	C6
	A6	B4	C7
	A8	B5	C8
	A9	В7	
	A14		
	A15		
	A16		
	A24		
	A25		

	Contents
Topic	Sub-topic Sub-topic
1 Introduction to Coordination Chemistry.	Introduction
2 Bonding in coordination compounds.	- Valence bond theory
	- Crystal field theory
	- Molecular orbital theory
3 Thermodynamic stability of coordination compounds.	- Introduction: stability/instability vs. inertia/lability
	- Stability constans
	- Factors that affect the stability of complexes
4 Reaction mechanisms of coordination compounds.	- Ligand substitution reactions
	- Redox reactions
5 Introduction to Solid State Chemistry.	Introduction
6 Ideal solids: Structural aspects and bonding.	- Structures of solids
	- Bonding in solids: ionic model and band model
7 Real solids: defects in solids, examples of inorganic solids	- Defects in solids
with relevant properties.	- Examples of solids with important properties

	Planning	9		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A25 B7 C2 C8	28	42	70
Workshop	A5 A6 A8 A9 A10 A14	6	21	27
	A16 B5 C2			
Problem solving	A3 A4 A15 A24 B1 B2	7	24.5	31.5
	B3 B4 C1 C2 C6 C7			
Objective test	A1 A4 A5 A6 A15 B1	1	0	1
	B2 B3 C1			
Mixed objective/subjective test	A1 A3 B2 B3 B4 B7	4	15.5	19.5
	C1 C2			
Personalized attention		1	0	1

Methodologies		
Methodologies	Description	
Guest lecture /	Lectures to introduce the most relevant issues related to the contents of the course, highlighting the most important aspects.	
keynote speech		
Workshop	Practical activities to aid the understanding of the more difficult aspects of the course.	

Problem solving	Classes oriented to solve problems and exercises previously proposed to the students, so that they can work on them in advance.
Objective test	Periodically, the students will perform a series of short-term or short-answer tests during the problem solving sessions. These
	objective test are designed both for the evaluation of the degree of acquisition of competences and the consolidation of the
	contents seen in the lectures. This activity will not only track the evolution of students, but also serve to detect those aspects of
	the subject that present a greater difficulty of understanding.
Mixed	Final written exams will take place following the schedule agreed by the institution with the aim to evaluate the global
objective/subjective	knowledge, understanding and skills acquired by each student. They may include short questions, multiple choice questions,
test	and problems similar to those solved throughout the course

Methodologies Problem solving	Description
Problem solving	
	The didactic methodology proposed for this course relies on the individual work of the student, which is the main responsible
Workshop	of the educational process. Nevertheless, it is of crucial importance to achieve a close interaction between the student and the
Guest lecture /	instructor, which will guide the student throughout the process. Thanks to this interaction and the different assessment
keynote speech	activities planned for the course the instructor will determine the extent to which the student has achieved the objectives of
	each topic and provide appropriate advice individually. This guidance will take place at the tutoring hours of the lecturer (the
	timetable will be indicated at the beginning of the course) or at any other moment agreed by the student and the instructor.
	Students can ask for additional tutoring sessions if required.
	Those students having a part-time dedication to the course, and thus waiver of assistance to the on-site academic activities
	according to the regulations of UDC, follow different dynamics that require additional personalized attention. The waiver
	applied to each student is fixed after a personal interview with the instructor on the basis of the student's personal
	circumstances. The tutoring sessions are scheduled in this interview upon agreement between the student and the instructor,
	who fixes the number of problem-solving workshops to be graded using this methodology and the deadlines for the
	presentation of the problem-sheets. The grade obtained by the student in these activities will correspond to the average of the
	grades achieved for each workshop. The tutoring sessions focus on discussions about the contents of the course and revision
	of the problem sheets solved by the student. The student might also have short tests to assess the degree of compliance with
	the objectives of the course.

		Assessment		
Methodologies	Competencies / Description		Qualification	
	Results			
Problem solving	A3 A4 A15 A24 B1 B2	Aspects to be evaluated: The solution of the proposed problems and exercises in the	5	
	B3 B4 C1 C2 C6 C7	seminars by the students, their participation in the discussions, and their interaction		
		with the other students.		
Workshop	A5 A6 A8 A9 A10 A14	Aspects to be evaluated: the exercises and activities carried out in the working	5	
	A16 B5 C2	sessions, the participation on the discussions, the interaction with the other students.		
Mixed	A1 A3 B2 B3 B4 B7	The final exam is designed as a joint mixed test that includes short questions, multiple	60	
objective/subjective	C1 C2	choice questions, and problems similar to those solved throughout the course.		
test				
Objective test	A1 A4 A5 A6 A15 B1	Periodically, the students will perform a series of short-term or short-answer tests	30	
	B2 B3 C1	during the problem solving sessions. These objective test are designed both for the		
		evaluation of the degree of acquisition of competences and the consolidation of the		
		contents seen in the lectures. This activity will not only track the evolution of students,		
		but also serve to detect those aspects of the subject that present a greater difficulty of		
		understanding.		

Assessment comments

The final grade is the sum of:

- "Mixed test": up to 6 points.
- "Problem solving" + "workshop": up to 1 point.
- "Objective tests": up to 3 points.

The assessment through mixed-tests will be split into two parts (Coordination Chemistry ans Solid State Chemistry). It is compulsory for the students to obtain a minimum of 2.7 points (out of a maximum of 6) in both two parts to pass the course. The grade of the mixed-test will be expressed as the average mark obtained in both parts. Students that obtain less than 2.7 points in one or the two parts will be graded with the lowest mark among the two. In the latter case, although the total sum of the marks obtained in the final test, seminars, workshops and objective tests was higher than 5.0 points, the subject will appear as "not passed" (4.5 points). In the official exams, named as 1st and 2nd opportunities, students will be assessed with a final exam (in case the marks of the two parts were lower than 2.7), or can choose to have an exam just of the part in which they obtained less than 2.7 points). The grade obtained from participation in seminars, workshops and objective tests will apply to both the assessment in 1st and 2nd opportinities.

Passing the course will require obtaining a minimum of 5.0 points (out of a maximum of 10) that will be calculated considering all the different marks obtained in the mixed tests, workshops, problem solving sessions and objective tests (It is compulsory to obtain a minimum of 2.7 points in the mixed test). Given that the course applies a continuum assessment model, the progress of the students during the semester can be awarded with up to one extra point, which will be added to the final grade if the mark in mixed tests is 2.7 or higher.

The student will be graded if his/her participation in the course represents more than 20% of the global activities of the course.

In accordance with the regulations (?Probas de Avaliación e Actas de Cualificación de Grao e Mestrado?), the "2nd opportunity" is only a second chance for the final exam (?mixed test?). The grade on this 2nd opportunity of the ?mixed test? will be added to those obtained during the course in ?problem solving? + ?workshops? . The percentages are the same as in the "1st opportunity".

?Matricula de honor (MH)? is the highest grade, awarded to very outstanding students having passed the course in the ?1st opportunity?. MH can be achieved in the "2nd opportunity" only if still available.

Only in very exceptional circumstances (adequately justified) the student may be exempted from the on going evaluation process. In that case, he must pass a special examination to prove, without any doubt, the overall level of knowledge and skills.

The teaching methodology and all activities performed during the course are designed according to a continuous evaluation model scheduled for a single academic year. Thus, the possibility of transferring partial qualifications to successive academic courses is not allowed.

Those students having a part-time dedication to the course, and thus waiver of assistance to the on-site academic activities according to the regulations of UDC, will be assessed as follows: 40% of the overall grade corresponds to the assessment of the personal work of the student (solution of problem-sheets), short tests and the personal interviews. The grades corresponding to this part are valid for both the first (June) and second (July) opprotunities. The remaining 60% of the grade corresponds to the assessment of the mixed test. Students have a second chance to be assessed with a mixed test in the 2nd opportunity. The grade obtained in the 2nd opportunity for the mixed test replaces that obtained in the 1st one. Given that the assessment of the course is based on a continuum-assessment model, students that do not pass the course will be treated as new students in the subsequent academic years.

Sources of information

- J. Ribas Gispert (2008). "Coordination Chemistry" (versión en ingles de "Química de **Basic** Coordinación"). Willey-VCH, Weinheim - L. Smart & Dore (1992). & Quot; Solid State Chemistry: an Introduction & Quot; Chapman & Dore (1992). Hall, London - J. Rivas Gispert (2000). " Química de Coordinación & quot;. Ediciones Omega S.A. - P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller y F. A. Armstrong (2008). "Química Inorgánica de Shriver y Atkins", Versión en español de la 4ª edición de " Shriver and Atkins' Inorganic Chemistry". - P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller and F. A. Armstrong. (2009). " Shriver and Atkins' Inorganic Chemistry&guot; 5th ed., W. H. Freeman and company, New York - L. Smart & Depart - L. Smart & Department - L. Smart "Solid State Chemistry: an Introduction". Ed. Reverté, Barcelona - A.R. West (1984). " Solid State Chemistry and its Aplications " . John Wiley & Dry, amp; Sons, New York - M.T. Weller (1999). "Inorganic Materials Chemistry". Oxford University Press, Oxford Os seguintes recursos bibliográficos están tamén dispoñibles como textos electrónicos a través de diferentes plataformas de consulta: - Introduction to Coordination Chemistry, G. A. Lawrance, disp. vía: Wiley Ebooks (AP). -Inorganic Chemistry, C. Cox, disp. vía: EBSChost Ebooks. - Descriptive Inorganic Chemistry, J. E. House, disp. vía: Elsevier ScienceDirect Books Complete. - Descriptive Inorganic Chemistry (3rd edition), J. E. House, disp. vía: Elsevier ScienceDirect Books Complete. - Solid State Chemistry (3rd edition), L. Smart, disp. vía: EBSChost Ebooks. -Inorganic Structural Chemistry (2nd edition), U. Müller, disp. vía: Wiley Ebooks (AP). Complementary - S. F. A. Kettle (1998). " Physical Inorganic Chemistry. A Coordination Chemistry Approach". Oxford University Press - A.F. Wells (1984). ?Structural Inorganic Chemistry? 5th Ed.. Oxford Univesity Press, London - A.F. Wells (1978). ?Química inorgánica estructural? Versión española de la 4ª Ed.. Ed. Reverté, Barcelona

Recommendations	
Subjects that it is recommended to have taken before	
Physical Chemistry 1/610G01016	
Physical Chemistry 2/610G01017	
Inorganic Chemistry 1/610G01021	
Inorganic Chemistry 2/610G01022	
Subjects that are recommended to be taken simultaneously	
Subjects that continue the syllabus	
Inorganic Chemistry 4/610G01024	
Advanced Inorganic Chemistry/610G01025	
Materials Science/610G01035	
Other comments	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.