

		Teaching	g Guide		
	Identifying	Data			2018/19
Subject (*)	Advanced Organic Chemistry			Code	610G01030
Study programme	Grao en Química				
	1	Descri	ptors		
Cycle	Period	Yea	ar	Туре	Credits
Graduate	1st four-month period	Fou	rth	Obligatory	6
Language	SpanishEnglish		1		
Teaching method	Face-to-face				
Prerequisites					
Department	Química				
Coordinador	Jimenez Gonzalez, Carlos		E-mail	carlos.jimenez@	udc.es
Lecturers	Jimenez Gonzalez, Carlos		E-mail	carlos.jimenez@	oudc.es
	Quintela Lopez, Jose Maria			jose.maria.quint	ela@udc.es
Web		I			
General description	This main goal of this subject is to p	provide studer	nts a deeper unde	rstanding of the synthe	tic strategies in the modern
	organic chemistry today, with specia	al focus on as	pects related to th	e stereochemical evol	ution of organic reactions.
	Therefore, new concepts in the stud	dy of stereoch	emistry of organic	compounds and their	reactions will be discussed, the
	fundamental aspects of the analysis	s Retrosynthe	tic and general str	ategies of organic synt	thesis. Particularly will be the main
	types of organic reactions in the car	rbon-carbon a	nd carbon-heteroa	atom bond formation.	Some advanced techniques in the
	laboratory of Organic Chemistry wil	l be also studi	ed		

	Study programme competences
Code	Study programme competences
A1	Ability to use chemistry terminology, nomenclature, conventions and units
A4	Knowledge of main types of chemical reaction and characteristics of each
A6	Knowledge of chemical elements and their compounds, synthesis, structure, properties and reactivity
A9	Knowledge of structural characteristics of chemical and stereochemical compounds, and basic methods of structural analysis and
	research
A10	Knowledge of chemical kinetics, catalysis and reaction mechanisms
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A15	Ability to recognise and analyse new problems and develop solution strategies
A17	Ability to work safely in a chemistry laboratory (handling of materials, disposal of waste)
A19	Ability to follow standard procedures and handle scientific equipment
A20	Ability to interpret data resulting from laboratory observation and measurement
A21	Understanding of qualitative and quantitative aspects of chemical problems
A26	Ability to follow standard laboratory procedures in relation to analysis and synthesis of organic and inorganic systems
B2	Effective problem solving
B3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
C1	Ability to express oneself accurately in the official languages of Galicia (oral and in written)

Learning outcomes			
Learning outcomes	Study	y progra	amme
	COI	mpeten	ces
Further knowledge of the most important principles of stereochemistry and conformational analysis of organic compounds	A1	B2	C1
	A9		
Be able to predict and explain the stereochemistry evolution of chemical reactions	A1		
	A9		

Possess knowledge of the main features, the main explanatory theories and mechanisms of the main reactions of C-C bond	A1	B2	C1
and C-heteroatom bond formation	A4		
	A10		
	A14		
	A15		
	A21		
Possess knowledge of the interconversion methods of the main functional groups	A1	B2	
	A4	B3	
	A6		
	A14		
Possess knowledge of the main objectives in organic synthesis, the main strategies of synthesis and the retrosynthetic	A1	B2	
analysis	A4		
	A14		
Possess knowledge of some advanced techniques in the research laboratory of Organic Chemistry	A17	B2	
	A19	B3	
	A20	B4	
	A26		

	Contents
Торіс	Sub-topic
Chapter 1. Stereochemistry and conformational analysis	Static and dynamic stereochemistry. Stereoselective and stereospecific chemical
	reactions (chemo-, regio- and stereoselective/specific reactions).
	Conformational analysis: conformational effects on reactivity.
Chapter 2. Pericyclic reactions	Introduction: characteristics of pericyclic reactions and theoretical approaches.
	Electrocyclic, Cycloaddition reactions and sigmatropic rearrangements.
Chapter 3. Free-Radical reactions	Generation and stability of free radicals. Main free-radical reactions.
Chapter 4. Generation of carbon-carbon bond by enols and	Alkylation, acylation and conjugate addition of enols and enolates
enolates.	
Chapter 5. Generation of carbon-carbon bond by	Organometallic reagents to make carbon-carbon bonds. Reactions involving transition
organometallic compounds	metal complexes.
Chapter 6. Generation of carbon- heteroatom bonds	Generation of carbon and oxygen, nitrogen, halide and sulfur bonds. Applications of
	organoboron chemistry to the generation of carbon-heteroatom bonds.
Chapter 7. Functional group interconversion reactions.	Main Functional group interconversion reactions Functional group interconversions
	through reduction and oxidation reactions.
Chapter 8. Protective groups in organic synthesis	The role of protective groups in organic synthesis. The concept of orthogonal sets.
	Hydroxyl, diols, aldehyde and ketone carbonyl, carboxylic acid and amine protecting
	groups.
Chapter 9. Retrosyntetic analysis.	Synthetic analysis and planning. Retrosyntetic analysis methodology. Types of
	transformations: disconnections, connections, functional group interconversion,
	addition and removing functional groups. Economic issues in retrosyntetic analysis.
	Illustrative synthesis. s

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Introductory activities	A14	1	0	1
Guest lecture / keynote speech	A1 A4 A6 A9 A10 A14	25	62.5	87.5
Problem solving	A15 A21 B2 B3 B4 C1	9	18	27

Laboratory practice	A17 A19 A20 A26	10	15	25
Mixed objective/subjective test	A1 A4 A6 A9 A10 A14	4	4	8
	B2 B3 C1			
Personalized attention		1.5	0	1.5
(*)The information in the planning table is	for muldeness only and door not i		hotovo vovolitvi of the ot	u de sete

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Introductory activities	An introduction to the subject will be presented to the students where the tasks to be performed along the course and the
	methodologies, assessment methods and the most relevant literature will be explained. It will be held the first day.
Guest lecture /	It is planned to carry out 25 sessions of lectures in one group where the theoretical contents of the subject together with
keynote speech	relevant illustrative examples will be presented. It will consist mainly of Power Point presentations. Students will have copies of
	all the presentations via the Moodle application, so that students can prepare them before classes. Interactive student
	participation will be encouraged at all times.
Problem solving	It is planned to carry out 9 problem seminar sessions in small groups where students will solve the problems elaborated by the
	teacher. Students will have in advance notice of such problems through the Moodle application. These seminars will also be
	used to solve any doubts that arise during the theoretical classes
Laboratory practice	It is planned to carry out three experimental working sessions in which students will have to perform the experiments
	scheduled. The students will have the procedure and information about such experiments in advance through the Moodle
	application, so that they can prepare them before the start of the experiment at the laboratory. The student will have to
	demonstrate the know-how of the experiment before entering the laboratory. They have to elaborate a laboratory notebook
	which has to be given to the teacher at the end of the experimental work.
Mixed	A final exam have to be done by the student on the dates established by the Faculty Board. Additionally, there is no mandatory
objective/subjective	midterm exam which will be eliminatory, so that students who pass this test does not need to be tested by that part at the final
test	exam. The aim of these exams will be evaluate the knowledge and skills acquired by students.

	Personalized attention
Methodologies	Description
Problem solving	This activity will mainly focus on resolving the doubts that may arise when students are trying to solve individually the
Laboratory practice	problems. It will take place in the timetable of tutorials available to the teacher.
	In addition, this personalized attention will take place in interviews that the student has to perform before carrying out the
	experiments scheduled practices

		Assessment	
Methodologies	Competencies	Description	Qualification
Problem solving	A15 A21 B2 B3 B4 C1	Student attendance at these seminar classes will be evaluated and their active participation will be assessed by questioning both in the classroom and through email. They will also be evaluated in the resolution of the problems at the seminars.	15
Laboratory practice	A17 A19 A20 A26	Firstly, students will be evaluated through a personal interview before they start each experiment. Then the student work at the laboratory will be evaluated from the point of view of organization, management skills to handle all chemicals, equipment and apparatus with care. Finally, the laboratory notebook that student will submit at the end of the experiments will be also evaluated. The attendance and pass these experimental classes are a necessary condition to pass this subject. Attendance at these experimental classes avoids to be considered as not presented.	15

Mixed	A1 A4 A6 A9 A10 A14	Students will have to solve similar problems in the written exams to those done at the	70
objective/subjective	B2 B3 C1	seminar classes. There are two exams: the first one or non compulsory partial exam	
test		will take place in about half of semester and the final exam to be held on a fixed date	
		on the calendar established by the Faculty Board. The partial exam is not compulsory	
		and is eliminatory, so that students who pass it, they do not have to be evaluated from	
		this part at the final exam.	

Assessment comments

Students must attend all experimental laboratory classes in order to pass this subject. They must reach at less a 45% for each evaluation items and they must reach equal to or greater than 5 points average rating. An essential requirement to pass the subject is to pass the experimental laboratory clases.

A student shall be considered ?not presented? when he is not attend the experimental laboratory classes and he is not present at the final exam. Students will have two opportunities: the first one in January and the second one in July. Students will keep the rates from experimental laboratory classes and from the seminars at the second opportunity in July. This new exam will be held on dates determined by the Faculty Board and the qualification will replace the one obtained in January.

Students at the second opportunity may only be eligible for honors if

the maximum number of them for this subject, according to the academic regulations, has not been covered in full at the first opportunity. In the following academic courses, students will have to perform all activities that are scheduled for that course.

The student who has not passed the laboratory practices will have to perform a test in the laboratory where he will perform the repetition of a part that will be indicated by the teacher. He must pass this test as an essential condition to pass the matter in that second opportunity.

Part-time students or students with special academic permission (according to the rules of the UDC): The same evaluation criteria listed above are applied, but it's not mandatory to attend classroom lectures, to hand-in the supervised projects and to attend the objective test. It is compulsory to attend laboratory practical sessions. It will be tried to fit the dates to the student's availability. The final grade will be the sum of 10% of the mark obtained in the practical sessions and 90% of the mark obtained in the mixed test. The same criteria will be applied to both opportunities. Students who has not attended the final exam will be assessed as "non attendance"

	Sources of information
Basic	- Clayden, J.; Greeves, N.; Warren, S.; Wothers, P., (2012). Organic Chemistry. Oxford, University Press
	- Ege, S. (1997). Química Orgánica: Estructura y reactividad. Barcelona. Reverté
	- Carda, M., Marco, J.A., Murga, J., Falomir, E. (2010). Análisis retrosintético y síntesis orgánica. Castellón de la
	Plana, Universitat Jaume I
	- Quiroga Feijóo, M. L (2007). Estereoquímica: conceptos y aplicaciones en química orgánica. Madrid, Síntesis
	- McMurry, J. (2000). Química Orgánica. México. Thomsom
	- Harwood, L. M.; Moody, C. J.; Percy, J. M. (1999). Experimental Organic Chemistry. Standard and microscale 2º Ec
	Oxford: Blackwell Science

Complementary	- Carey, F. A.; Sundberg, R. J. (2007). Advanced Organic Chemistry 5º Edición. New York: Springer
	- Smith, M. B.; March, J (2007). March?s Advanced Organic Chemistry 6º Ed New York: Wiley
	- Norman, R. O. C.; Coxon, J. M. (1993 (2001 imp.)). Principles of Organic Synthesis. Cheltenham (RU): Nelson
	Thornes
	- Carda, M., Rodríguez, S., González, F., Murga, J., Falomir, E., Castillo, E. (1996). Síntesis Orgánica. Resolución de
	problemas por el método de la desconexión. Castellón de la Plana: Universitat Jaume I
	- Eliel, E. L., Wilen, S.H. (1994). Stereochemistry of organic compounds. New York : John Wiley & amp; Sons

Recommendations Subjects that it is recommended to have taken before

Organic Chemistry 1/610G01026

Organic Chemistry 2/610G01027

Intermediate Organic Chemistry/610G01028

Experimental Organic Chemistry/610G01029

Chemistry Laboratory 2/610G01032

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Medicinal Chemistry/610G01040

Final Dissertation/610G01043

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.