

		Teaching Guid	е			
	Identifying	g Data			2022/23	
Subject (*)	Molecular Genetics Code		Code	610G02020		
Study programme	Grao en Bioloxía					
	-	Descriptors				
Cycle	Period	Year		Туре	Credits	
Graduate	1st four-month period	Third		Obligatory	6	
Language	SpanishGalicianEnglish					
Teaching method	Face-to-face					
Prerequisites						
Department	Bioloxía					
Coordinador	Insua Pombo, Ana Maria E-mail ana.insua@udc.es			es		
Lecturers	Insua Pombo, Ana Maria		E-mail	ana.insua@udc.es		
	Martinez Martinez, M. Luisa			m.l.martinez@u	dc.es	
	Vila Sanjurjo, Antón			anton.vila@udc.	es	
Web						
General description	This course focuses on the concept	otual and methodolog	ical bases ne	ecessary to understar	nd the organization, expression,	
	variation and manipulation of genetic material. It provides a molecular perspective to the knowledge adqu					
	(second year) and knowledge necessary to address "Population Genetics and Evolution", "Cytogenetics" and related					
	courses of third and fourth year.					

	Study programme competences			
Code	Study programme competences			
A5	Analizar e caracterizar mostras de orixe humana.			
A8	Illar, analizar e identificar biomoléculas.			
A11	Identificar e analizar material de orixe biolóxica e as súas anomalías.			
A12	Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.			
A15	Deseñar e aplicar procesos biotecnológicos.			
A29	Impartir coñecementos de Bioloxía.			
A30	Manexar adecuadamente instrumentación científica.			
A31	Desenvolverse con seguridade nun laboratorio.			
B1	Aprender a aprender.			
B2	Resolver problemas de forma efectiva.			
B3	Aplicar un pensamento crítico, lóxico e creativo.			
B5	Traballar en colaboración.			
B7	Comunicarse de maneira efectiva nunha contorna de traballo.			

Learning outcomes			
Learning outcomes			amme
	cor	npeten	ces
General knowledge and understanding of the molecular basis of the organization, expression, variation and manipulation of	A11	B1	
genetic material.	A12	B2	
	A15	B3	
	A29	B5	
		B7	

Knowledge of the basic methodologies used in Molecular Genetics.	A5	B1	
	A8	B2	
	A11	B3	
	A12	B5	
	A15		
	A29		
	A30		
	A31		
Ability to use sources of information of interest in Molecular Genetics.	A5	B1	
	A11	B2	
	A12	B3	
	A15		
	A29		
Ability to interpret and transmit Molecular Genetics information.	A29	B1	
		B2	
		B3	
		B5	
		B7	

	Contents
Торіс	Sub-topic
1 DNA REPLICATION	Semiconservative DNA replication: the Meselson and Stahl experiment. Modes of
	replication. Enzymology of the replication. DNA replication in Escherichia coli. DNA
	replication in eukaryotes. Telomere synthesis. Replication of mitochondrial and
	chloroplast DNA.
2 SYNTHESIS AND PROCESSING OF RNA	Classes of RNA. RNA polymerases. Promoters and transcriptional apparatus.
	Transcription in prokaryotes and eukaryotes: initiation, elongation and termination.
	Interrupted genes: exons and introns. Processing of eukaryotic pre-mRNA. Synthesis
	and processing of pre-rRNA. Synthesis and processing of pre-tRNA. RNA edition.
	Revision of gene concept.
3 TRANSLATION	Central dogma in molecular biology. Ribosomes and tRNAs. Translation cycle:
	initiation, elongation, and termination. Genetic code and genetic decoding. Peptydil
	transferase reaction. Phylogenetic conservation of rRNA. Role of rRNA in initiation.
	Role of RNA in decoding. Role of RNA in peptydil transfer. The hypothesis of the RNA
	world.
4 MUTATION AND DNA REPAIR	Molecular basis of spontaneous mutations: replication errors, unequal crossing over,
	spontaneous chemical changes. Molecular basis of induced mutations: chemical and
	physical agents. Repair mechanisms: direct reversal of damaged DNA, excision
	repair, mismatch repair, repair of double-strand breaks, translesion synthesis.
5 MOLECULAR MECHANISM OF GENETIC	The role of genetic recombination. Gene conversion. Models of homologous
RECOMBINATION	recombination: Holliday model and double-strand break model. Enzymes required for
	recombination. Site-specific recombination. Immunoglobulin gene rearrangements.
6 TRANSPOSABLE GENETIC ELEMENTS	Transposable elements in prokaryotes: insertion sequences, composite transposons
	and noncomposite transposons. Replicative and non replicative transposition.
	Transposable elements in eukaryotes: transposons and retrotransposon. Evolutionary
	significance of transposable elements.
7 RECOMBINANT DNA TECHNOLOGY	Restriction enzymes. Cloning vectors. DNA libraries: construction and screening.
	Southern and northern blotting. PCR. Restriction maps. DNA sequencing.
	Site-directed mutagenesis.

8 APPLICATIONS OF RECOMBINANT DNA	Expression of eukaryotic genes in E. coli. DNA transfer to eukaryotic cells. Transgenic
TECHNOLOGY	animals. Transgenic plants. Gene therapy. Genetic diagnosis. Genome editing:
	CRISPR/Cas9 technology.
9 GENOMICS	Structural genomics: molecular markers and genetic maps. DNA fingerprinting.
	Structural genomics: physical maps and genome annotation. Functional genomics:
	RNA-seq. Reverse genetics. Comparative genomics. Metagenomics. Synthetic
	biology.
10 REGULATION OF GENE EXPRESSION IN BACTERIA	Jacob and Monod?s operon model for the regulation of lac genes in E. coli. Positive
	control of the lac operon. The triptophan operon of E. coli: negative control and
	attenuation. RNA-mediated regulation.
11 REGULATION OF GENE EXPRESSION IN	Changes in chromatin structure. DNA methylation. Transcriptional control.
EUKARYOTES	RNA processing control. Control of mRNA stability. Control at the level of translation.
	RNA interference. Epigenetics.
PRACTICE 1: DNA EXTRACTION	Genomic DNA extraction. Agarose gel electrophoresis for DNA. DNA quantification.
PRACTICE 2: PCR	PCR amplification of the CHD gene. Analysis of an intron polymorphism for bird
	sexing.
PRACTICE 3: BIOINFORMATICS.	Edition and analyses of nucleic acid sequences. BLAST. GenBank: record search and
	analysis. Primer design. Virtual PCR. Directed cloning.

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A5 A8 A11 A12 A15	28	28	56
	B2 B3 B7			
Seminar	A5 A8 A11 A12 A15	8	16	24
	A29 B1 B2 B3 B5 B7			
Supervised projects	A5 A8 A11 A12 A15	0	16	16
	A29 B1 B2 B3 B5 B7			
Laboratory practice	A5 A8 A11 A12 A15	6	6	12
	A30 A31 B1 B2 B3 B5			
	B7			
ICT practicals	A5 A8 A12 A15 B2 B3	9	9	18
	B5 B7			
Mixed objective/subjective test	A5 A11 A12 A15 A29	4	18	22
	B1 B2 B3 B7			
Personalized attention		2	0	2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture / keynote speech	The teacher explains the main contents of each lesson and raises questions.
Seminar	Question and problem solving and discussion of specific topics related to the subject.
Supervised projects	Resolution of two questionnaires with exercises and questions related to some aspect of the subject. Group activity.
Laboratory practice	The student conducts laboratory experiences following a protocol, under the supervision of the teacher.
ICT practicals	Question solving by database searching and the use of bioinformatic tools.
Mixed	Written test on the theory contents of the subject.
objective/subjective	
test	

	Personalized attention
Methodologies	Description
Supervised projects	Individually or in group, students can attend tutorial sessions to consult any doubts that might arise from the different activities.

		Assessment	
Methodologies	Competencies	Description	Qualification
Laboratory practice	A5 A8 A11 A12 A15	Knowledge acquisition and general understanding of the practices carried out will be	15
	A30 A31 B1 B2 B3 B5	assessed by means of a test with essay-type questions, multiple-choice, short-answer	
	B7	and / or association tests.	
Supervised projects	A5 A8 A11 A12 A15	The ability to solve problems and connect the contents of the course subject will be	10
	A29 B1 B2 B3 B5 B7	assessed by means of two tests with multiple-choice, short-answer and / or	
		association test questions.	
Mixed	A5 A11 A12 A15 A29	The degree of general knowledge and understanding of the subject will be assessed.	55
objective/subjective	B1 B2 B3 B7	It may include different types of questions (essay, multiple-choice, short answer,	
test		and/or multiple-matching) and problem solving.	
ICT practicals	A5 A8 A12 A15 B2 B3	The degree of understanding of the assays carried out as well as the knowledge on	20
	B5 B7	the use of bioinformatics tools will be assessed. The test requires the use of a	
		computer connected to the internet and equipped with the bioinformatics programs to	
		be used in the course.	

Assessment comments

To be evaluated, it is essential to take tests on theory (mixed test), laboratory practices, and ICT practices.

To pass the course, the score must be 5 or higher, provided that the mean score of the practice tests (laboratory and ICT) and the score of the mixed objective/subjective test is >4. If the sum of the score of all activities is higher than 5, but the above requirements are not met, the final score will be 4.9 (failing score).

The grade of Non Attendance(NP) will be applied to the students that do no attend the official exam.

Honors will be preferably awarded among students with a score of 9 or higher in the January opportunity.

There will be a midterm exam and, in case of achieving a grade higher than 4, it will not have to be repeated in the January and July opportunities. On the second opportunity (July), you may choose to: (A) adopt the evaluation criteria of the first opportunity (specified in the EVALUATION section); or (B) take the tests corresponding to theory (mixed test), laboratory practice sessions, and ICT, with the mixed test representing 65% of the total grade. The choice of option B must be informed 10 days before the exam date. In the case of students with part-time dedication and exemption from attendance, additional measures may be adopted so that the subject can be passed. These measures may include flexibility in the hours of practices, or grading through a global assessment test of learning outcomes.

Students who request the early December call will be able to choose between the application of the current teaching guide or that of the previous year.

Fraudulent realization of tests or evaluation activities, once verified, will directly imply the qualification of "0" in the corresponding opportunity.

Sources of information

Basic	- Klug, W.S., Cummings, M.R., Spencer, C.A (2013). Conceptos de Genética . Pearson/Prentice Hall, Madrid				
	- Pierce, B.A. (2015). Genética: un enfoque conceptual. Médica Panamericana, Madrid				
	- Klug, W.S., Cummings, M.R., Spencer, C.A., Paladino, M.A., Killian, D.J. (2020). Concepts of Genetics. Pearson				
	Education, Harlow				
	- Pierce, B.A. (2020). Genetics: a conceptual approach. Freeman, New York				
Complementary	- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2010). Biología molecular de la célula. Omega,				
	Barcelona				
	- Benito, C., Espino, F.C. (2013). Genética: conceptos esenciales. Médica Panamericana, Madrid				
	- Brooker, R.J. (2018). Genetics: analysis and principles (6th ed.). McGraw-Hill, New York				
	- Brown, T.A. (2017). Genomes 4 . Garland Science, New York				
	- Cox, M.M., Doudna, J.A., O'Donnell (2012). Molecular biology: principles and practice. W.H. Freeman, New York				
	- Craig, N.L., Cohen-Fix, O., Green, R., Greider, C., Storz, G., Wolberger, C. (2014). Molecular biology: principles of				
	genome function. Oxford University Press, Oxford				
	- Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2015). Introduction to genetic analysis (11th ed.). W.H.				
	Freeman, New York				
	- Hartwell, L.H., Goldberg, M.L., Fischer, J.A., Hood, L., Aquadro, C.F. (2015). Genetics: from genes to genomes (5th ed.) . McGraw-Hill, New York				
	- Herráez, A. (2012). Biología molecular e ingeniería genética. Elsevier, Ámsterdam				
	- Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T. (2012). Lewin genes: fundamentos. Médica Panamericana, Madrid				
	- Lewin, B. (2008). Genes IX. McGraw-Hill. México				
	- Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., Scott, M.P. (2016). Biología celular y molecular (7 ^a ed) . Médica Panamericana, Madrid				
	- Perera, J., Tormo, A., García, J.L. (2002). Ingeniería genética. Vol. I: Preparación, análisis, manipulación y clonaje de DNA. Síntesis, Madrid				
	- Perera, J., Tormo, A., García, J.L. (2002). Ingeniería genética. Vol. II. Expresión de DNA en sistemas heterólogos.				
	Síntesis, Madrid				
	- Real García, M.D., Raussell Segarra, C., Latorre Castillo, A. (2017). Técnicas de ingeniería genética. Síntesis,				
	Madris				
	- Russell, P.J. (2010). iGenetics: a molecular approach (3rd ed.) . Benjamin Cummings, San Francisco				
	- Snustad, D.P., Simmons, M.J. (2012). Genetics (6th ed.). John Wiley and Sons, New York				
	- Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2014). Molecular biology of the gene.				
	Pearson, Boston				
	Consultar a plataforma Moodle para fontes de información adicionais.				

Recommendations	
Subjects that it is recommended to have taken before	
Biology: Basic Levels of Organisation of Life I (Cells)/610G02007	
Biochemistry I/610G02011	
Biochemistry II/610G02012	
Microbiology/610G02015	
Genetics/610G02019	
Subjects that are recommended to be taken simultaneously	
Subjects that continue the syllabus	
Population Genetics and Evolution/610G02021	
Cytogenetics/610G02022	
Other comments	

Recommendations:Attend class and follow the development of the course regularly.Check Campus Virtual and email regularly to obtain the materials and know the schedule of activities.Attend tutorials to resolve any questions or difficulties that may arise.Consult the recommended bibliography.Keep up-to-date with course work.GREEN CAMPUS FACULTY OF SCIENCES PROGRAM

To help achieve a sustainable immediate environment and comply with point 6 of the "Environmental Declaration of the Faculty of Sciences (2020)", the documentary works carried out in this matter: a. They will be requested mainly in virtual format and computer support. b. If done on paper:

- Plastics will not be used.
- Double-sided prints will be made.
- The preparation of drafts will be avoided.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.