

		Teaching Guide				
	Identifying Data				2019/20	
Subject (*)	Data Analytics with HPC Code			de 614	1473108	
Study programme	Mestrado Universitario en Comput	ación de Altas Prestación	s / High Performanc	e Computing (Mo	od. Presencial)	
		Descriptors				
Cycle	Period	Year	Тур	e	Credits	
Official Master's Degre	e 2nd four-month period	First	Optio	nal	6	
Language	English					
Teaching method	Face-to-face					
Prerequisites						
Department	Enxeñaría de Computadores					
Coordinador	López Taboada, Guillermo	E-r	nail guillern	no.lopez.taboada	a@udc.es	
Lecturers	López Taboada, Guillermo	E-r	nail guillern	guillermo.lopez.taboada@udc.es		
	Rodríguez Álvarez, Gabriel		gabriel	gabriel.rodriguez@udc.es		
Web	aula.cesga.es					
General description	The increasing amount of informat	ion available through the	nternet calls for the	efficient process	ing of large amounts of	
	data. This has led to the developm	nent of new storage and p	ocessing technique	s to deal with hug	ge amounts of data,	
	namely Big Data techniques, that	naturally adapt to distribut	ed systems.			
	The main goal of this subject is to	learn suitable processing	techniques for large	amounts of infor	rmation in the Big Data	
	world, particularly using the Hadoo	op ecosystem, and compa	re these techniques	with the tradition	nal ones employed in HPC	
	environments. This will allow the s	tudent to select the optima	al tools to solve a pa	rticular problem.		

	Study programme competences
Code	Study programme competences
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
B6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B8	CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and
	advanced technologies in the field
B10	CG5 - Be able to work in teams, specially multidisciplinary, and do a proper time and people management and decision taking
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning
C4	CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural advance of the
	society

Learning outcomes			
Learning outcomes		Study programme	
	competences		
The student will be capable of installing, configuring, and managing the basic software for massive data processing.	AJ1	BJ2	CJ1
	AJ2	BJ6	
		BJ8	
		BJ10	
The student will be capable of coding massive data processing applications using domain-specific languages.	AJ2	BJ1	CJ1
		BJ2	
		BJ10	

The student will learn about Data Engineering tools (for Intake/Storage/Processing/Visualization).	AJ1	BJ1	CJ1
	AJ2	BJ2	CJ4
The student will learn the skills to search, select and manage Big data-related resources (bibliography, software, etc.).	AJ1	BJ1	CJ1
	AJ2	BJ6	CJ4

	Contents		
Topic Sub-topic			
1. Introduction to Data Engineering	1.1 HPC vs Big Data: similarities and differences in data management.		
	1.2 Hardware and Software Technologies for High Performance Data Engineering		
	1.3 Data Engineering in HPC infrastructures vs. Cloud environments		
2. Data Engineering phases	2.1 Modeling (Formats, Compression, Designing Schemas)		
	2.2 Intake (Periodicity, Transformations, Tools)		
	2.3 Storage (HDFS and NoSQL DBs, HBase, MongoDB, Cassandra)		
	2.4 Processing (Batch, Real-Time)		
	2.5 Orchestration		
	2.6 Analysis (SQL, Machine Learning, Graphs, UI)		
	2.7 Governance		
	2.8 Integration with BI (Visualization)		
3. Introduccion to Data Analytics	3.1 Exploratory Data Analytics		
	3.2 Introduction to Machine Learning		
4 Use cases	4.1 Applications to Internet of Things (Smart environments and Industry 4.0)		
	4.2 Applications to sciences and engineering		

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 A2 B1 C4	18	0	18
Laboratory practice	B1 B8 B10	20	60	80
Supervised projects	A1 A2 B1 B2 B8	0	45	45
Directed discussion	B6 C4 C1	4	2	6
Personalized attention		1	0	1
(*)The information in the planning table is for	quidance only and does not	take into account the	beterogeneity of the stud	lonts

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Taught by a professor. Classes include theoretical contents, as well as seminars.
keynote speech	
Laboratory practice	Problem solving and practical cases.
Supervised projects	Semi-autonomous work on larger practical cases, under the professors' guidance.
Directed discussion	Guidance to solve individual / group assignments, problem solving and continuous evaluation activities.

	Personalized attention
Methodologies	Description
Directed discussion	During laboratory practice, supervised projects, and directed discussions, students will be able to ask questions, doubts, etc.
Laboratory practice	The teacher, after listening to the students feedback, will go over difficult concepts, solve new problems, or use any
Supervised projects	appropriate methodology to answer the questions.

Assessment

Methodologies	Competencies	Description	Qualification
Directed discussion	B6 C4 C1	Continued, active, objectively measurable participation by the student.	10
Laboratory practice	B1 B8 B10	Grading the assignments submitted by students.	40
Supervised projects	A1 A2 B1 B2 B8	Grading the supervised projects submitted by students.	50

Assessment comments

First evaluation (May):

Practical exercises: 40% Guided projects: 50% Objective participation: 10% Second evaluation (June/July):

Practical exercises: same grade as in the first evaluation, as there are no new activities planned for this evaluation. 40% of the final grade. Guided projects: projects not evaluated in may or deemed incomplete will be presented in july after performing the changes suggested by the professor. 50% of the final grade. Objective participation: same grade as in the first evaluation, as there are no new activities planned for this evaluation. 10% of the final grade. Not graded:

Students that do not present any practical exercise or guided project will not be graded.

	Sources of information
Basic	 Tom White (2015). Hadoop: The Definitive Guide. O'Reilly (4^a ed.) Wes McKinney (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly (2^a ed.)
Complementary	- Alex Holmes (2014). Hadoop in practice. Manning (2 ^a ed.)

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments
RecommendationsDue to the large practical component of the subject, it is advisable to be up-to-date with practices and guided projects during the
semester.
Observations The course makes intensive use of online communication tools: Video calls, chats, etc. In-person classes will be recorded for later

perusing. An online learning management will be using for distributing notes, creating forums, etc.

The software tools used in this course are generally open-source or have free license for students.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.