

		Teaching Guide			
Identifying Data 2019/20					
Subject (*)	Analysis of biomedical images Code 614522010			614522010	
Study programme	Mestrado Universitario en Bioinfor	mática para Ciencias da Saúd	le		
	- ·	Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	ee 2nd four-month period	First	Obligatory	6	
Language	Spanish				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecno	oloxías da InformaciónComput	ación		
Coordinador	Barreira Rodriguez, Noelia	E-mail	noelia.barreira@udc.es		
Lecturers	Barreira Rodriguez, Noelia	E-mail	noelia.barreira@u	noelia.barreira@udc.es	
	De Moura Ramos, Jose Joaquim	se Joaquim joaquim.demoura@udc.es			
	Gonzalez Penedo, Manuel manuel.gpenedo@udc.es				
	Novo Bujan, Jorge j.novo@udc.es				
Web					
General description	This course presents introductory	medical image processing and	d analysis techniques. It pre	esents basic concepts about	
	image processing. Topics include	data acquisition, imaging, filter	ring, image segmentantion	and registration. The focus of	
	the course is to provide a global p	erspective and practical exper	ience in the field.		

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Ability to know the scope of Bioinformatics and its most important aspects
A2	CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
A4	CE4 - Ability to acquire, obtain, formalize and represent human knowledge in a computable form for the resolution of problems through a
	computer system in any field of application, particularly those related to aspects of computing, perception and action in bioinformatics
	applications
A6	CE6 - Ability to identify software tools and most relevant bioinformatics data sources, and acquire skill in their use
B1	CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas,
	often in a context of research
B2	CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
	broad (or multidisciplinary) contexts related to their field of study
B5	CB10 - Students should possess learning skills that allow them to continue studying in a way that will largely be self-directed or
	autonomous.
B6	CG1 -Search for and select the useful information needed to solve complex problems, driving fluently bibliographical sources for the field
B7	CG2 - Maintain and extend well-founded theoretical approaches to enable the introduction and exploitation of new and advanced
	technologies
C3	CT3 - Use the basic tools of the information technology and communications (ICT) necessary for the exercise of their profession and
	lifelong learning
C6	CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to

Learning outcomes			
Learning outcomes	Study	/ progra	mme
	con	npetenc	es /
results			
Understand the medical imaging modalities and their significance	AJ1	BJ1	
Understand the basic concepts of image processing		BJ5	CJ3
	AJ6	BJ6	

Design ar

AJ2	BJ2
	B 17

nd evaluate medical analysis techniques	AJ2	BJ2	CJ6
		BJ7	

	Contents
Торіс	Sub-topic
Introduction to digital imaging.	Adquisition models.
	Quality metrics.
	Color spaces.
	Histograms.
Image processing.	Enhancement.
	Edge detection.
	Segmentation.
	Morphological operators.
Image registration and fusion.	Intensity vs features.
	Similarity measures.
	Multimodal methods.
Validation of medical image analysis methodologies	Measures for quality assessment
	Training and testing methods
	Statistical tests

Planning				
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A4 B1	16	16	32
Laboratory practice	A2 A6 B2 B7 C3	16	32	48
Research (Research project)	A2 B2 B5 B6	16	32	48
Practical test:	A2 A6	0	16	16
Objective test	A1 A2 B1 B2 C6	3	0	3
Personalized attention		3	0	3

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Lectures with the use of audiovisual aids. Questions will be raised in order to transmit the knowledge and enforce the learning.
keynote speech	
Laboratory practice	The aim is to solve common problems in medical imaging using the methods explained in the lectures.
Research (Research	Proposal of a biomedical imaging problem in which learner is tasked with identifying problem, articulating specific nature of
project)	problem, analysing it, interpreting results, and reaching appropriate conclusion.
Practical test:	Practical application of specific techniques or procedures already studied in the keynote lectures during the semester.
Objective test	Test with questions about the theoretical contents of the subject as well as practical problems.

	Personalized attention
Methodologies	Description
Research (Research	Teachers will answer the doubts during the laboratory practice and they will provide personal advising for the supervised
project)	projects.
Practical test:	
Laboratory practice	
Objective test	

Assessment			
Methodologies	Competencies /	Description	Qualification
	Results		
Research (Research	A2 B2 B5 B6	Suitability of the proposed solutions to the problems. Quality of the obtained results.	30
project)		Comprehension of the employed techniques.	
Practical test:	A2 A6	Suitability of the solutions to the practical excercises proposed during the semester.	10
Laboratory practice	A2 A6 B2 B7 C3	Suitability of the proposed solutions to the problems. Quality of the obtained results. Comprehension of the employed techniques.	20
Objective test	A1 A2 B1 B2 C6	Written test with theoretical questions and practical problems to be solved.	40

Assessment comments

In order to pass this subject, students have to get, at least, 50% of the mark in laboratory practice, supervised projects and objective test.ACADEMIC EXEMPTION For all those students with half time dedication and academic exemption specific considerations will be taken.

	Sources of information
Basic	- Rafael C. González, Richard E. Woods (2010). Digital image processing. Upper Saddle River (New Jersey) :
	Pearson-Prentice Hall, [2010]
	- Milan Sonka, Vaclav Hlavac, Roger Boyle (2014). Image processing, analysis and machine vision. Pacific Grove,
	California : Brooks/Cole Publishing Company,
Complementary	- David A. Forsyth, Jean Ponce (2012). Computer vision : a modern approach. Boston : Pearson
	- Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Springer (draft online)

Recommendations		
Subjects that it is recommended to have taken before		
Introduction to programming/614522001		
Subjects that are recommended to be taken simultaneously		
Probability. statistics and elements of biomathematics/614522007		
Foundations of Artificial Intelligence/614522003		
Subjects that continue the syllabus		
Advanced medical visualization/614522019		
Other comments		

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.