		Teaching Guide		
	ldentifying l	Data		2022/23
Subject (*)	Data structures and algorithmics for	biological sequences	Code	614522013
Study programme	Mestrado Universitario en Bioinform	ática para Ciencias da Saúc	de	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 2nd four-month period	First	Obligatory	6
Language	SpanishEnglish			
Teaching method	Face-to-face			
Prerequisites				
Department	Ciencias da Computación e Tecnolo	xías da InformaciónComput	tación	
Coordinador	Ladra González, Susana	E-mail	susana.ladra@	udc.es
Lecturers	Ladra González, Susana	E-mail	susana.ladra@	udc.es
	Silva Coira, Fernando		fernando.silva@	@udc.es
Web				
General description	This course introduces the basics of	the algorithms and data str	uctures that are common	ly used in the field of
	computational biology.			

Study programme competences
Study programme competences
CE1 - Ability to know the scope of Bioinformatics and its most important aspects
CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
CE3 ? To analyze, design, develop, implement, verify and document efficient software solutions based on an adequate knowledge of the
theories, models and techniques in the field of Bioinformatics
CE8 - Understanding the basis of the information of the hereditary material, its transmission, analysis and evolution
CE9 ? To understand the benefits and the problems associated with the sequencing and the use of biological sequences, as well as
knowing the structures and techniques for their processing
CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas,
often in a context of research
CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
broad (or multidisciplinary) contexts related to their field of study
CG3 - Be able to work in a team, especially of interdisciplinary nature
CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to.
CT7 ? To maintain and establish strategies for scientific updating as a criterion for professional improvement.

Learning outcomes			
Learning outcomes	Study	y progra	amme
	COI	mpeten	ces
To know the data structures and the algorithms used for compactly storing and processing of biological sequences.	AJ1		
	AJ2		
	AJ9		
To analyze and compare the data structures and the complexity of the algorithms used.	AJ2	BJ1	CJ6
	AJ3		CJ7
To understand, analyze, design and implement solutions for different fundamental problems of sequence alignment, read error	AJ1	BJ1	CJ6
correction, contig assembly, gap filling, etc.	AJ2	BJ2	CJ7
	AJ3	BJ8	
	AJ8		
	AJ9		

To explain, analyze, design and implement solutions to the problems related with evolution, such as haplotype assembly, motif	AJ1	BJ1	CJ6	
finding, permutation patterns, genomic rearrangement, etc.	AJ2	BJ2	CJ7	
	AJ3	BJ8		
	AJ8			
	AJ9			

	Contents	
Topic	Sub-topic	
Introduction to algorithms complexity analysis	Algorithms analysis	
	Complexity	
Sequence pattern search	Exact string matching methods	
	Approximate string matching methods	
	Suffix trees and suffix arrays	
Introduction to sequence compression and indexing	Compression techniques	
	Indexes and self-indexes	
Applications to biological sequences	Sequence comparison	
	Motif finding	
	Genomic rearrangements	
	Sequence alignment	
	Sequence assembly	
	Phylogenetic analysis	

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
ICT practicals	A2 A3 B1 B2 B8 C6	14	60	74
	C7			
Supervised projects	A1 A2 A3 A8 A9 B1	3	30	33
	B2 B8 C6 C7			
Mixed objective/subjective test	A1 A2 A3 A8 A9 B2	0	5	5
Guest lecture / keynote speech	A1 A2 A3 A8 A9	28	10	38
Personalized attention		0	0	0
(*)The information in the planning table is for	or guidance only and does not t	take into account the	heterogeneity of the stud	lents.

	Methodologies
Methodologies	Description
ICT practicals	Students will complete practical exercises to develop all the knowledge acquired during lectures.
Supervised projects	Students will develop a work, individually or in small group, under the supervision of the teachers.
Mixed	It consists of a written test to show that the student has acquired the knowledge and skills during lectures and practice
objective/subjective	sessions.
test	
Guest lecture /	Lectures where the course contents are exposed.
keynote speech	

	Personalized attention	
Methodologies	Description	
Supervised projects	There may exist differences among the students regarding their background on algorithms and data structures. Thus, teachers	
ICT practicals	ls will provide personalized attention for practice sessions and for the supervised project, both individual or in small groups.	

		Assessment	
Methodologies	Competencies	Competencies Description	
Mixed	A1 A2 A3 A8 A9 B2	It will consist of a written test where the students must prove the knowledge and	30
objective/subjective		competences acquired during lectures and practice sessions.	
test			
		To pass the course globally it is necessary to obtain in the mixed test a minimum	
		grade of 1.5 (over 3). If that minimum grade is not achieved, the maximum grade	
		cannot exceed 4.9 (and therefore the course is failed)	
Supervised projects	A1 A2 A3 A8 A9 B1	Students must complete a project, individually or in small groups, related with a	20
	B2 B8 C6 C7	scientific article. It must be presented in front of the teaching staff.	
ICT practicals	A2 A3 B1 B2 B8 C6	The work done by the students during practice sessions will be assessed. Students	50
	C7	must submit bulletins with their solutions to proposed problems and defend them in	
		front of the teaching staff.	

Assessment comments

FIRST OPPORTUNITY:

Students that do not take the written exam will obtain a grade of "Non presentado" (Absent).

SECOND OPPORTUNITY:

Only those students that have not passed the course in the first opportunity can be evaluated in the second opportunity. Students can recover any of the parts as follows:

ICT practicals (50%): the students can repeat the ICT practicals under the same circumpstances than in the first opportunity (those submitted out of time can obtain a maximum of 80% of the grade). Thus, in case of repeating all the assignments, the maximum grade will be 4 points. Supervised project (20%): in the same conditions as in the first opportunity. Written test (30%): in the same conditions as in the first opportunity. In case of not retaking one of the parts, the grade obtained in the first opportunity for that part will be kept. To pass the course globally it is necessary to obtain in the mixed test a minimum grade of 1.5 (over 3). Students that do not retake any part will obtain a grade of "Non presentado" (Absent). ADVANCED OPPORTUNITY:

The assessment for the advanced opportunity is equivalent to that of the first opportunity (50% ICT practicals, 20% supervised project, which must be done individually, and 30% written text). ACADEMIC DISPENSATION:

Students officially enrolled part-time who have been granted an official dispensation from attending classes, as stipulated in the regulations of this University, must contact with the responsible of the course within the first two weeks to establish the conditions for submitting and defending the practical exercises and the supervised project.

	Sources of information
Basic	- Dan Gusfield (1997). Algorithms on Strings, Trees and Sequences. Cambridge University Press
	- Neil C. Jones, Pavel A. Pevzner (2004). An Introduction to Bioinformatics Algorithms. MIT Press
	- Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, Alexandru I. Tomescu (2015). Genome-Scale Algorithm Design.
	Cambridge University Press
Complementary	- Enno Ohlebusch (2013). Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic
	Reconstruction. Oldenbusch Verlag
	- G. Navarro y M Raffinot (2002). Flexible Pattern Matching in Strings. Cambridge University Press
	- A. Moffat y A. Turpin (2002). Compression and Coding Algorithms. Kluwer Academic Publishers
	- T. C. Bell, J. G. Clearly y I. H. Witten (1990). Text Compression. Prentice Hall

Recommendations
Subjects that it is recommended to have taken before

Introduction to molecular biology/614522004

Genetics and molecular evolution/614522005

Genomics/614522006

Fundamentals of bioinformatics/614522008

Introduction to programming/614522001

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Advanced processing of biological sequences/614522020

New trends and applications in bioinformatics and biomedical engineering/614522021

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.