		Teaching Guide			
	Identifying Data 2019/20				
Subject (*)	Advanced processing of biologica	l sequences		Code	614522020
Study programme	Mestrado Universitario en Bioinfo	rmática para Ciencias o	la Saúde		'
		Descriptors			
Cycle	Period	Year		Туре	Credits
Official Master's Degree	e 1st four-month period	Second		Optional	3
Language	SpanishGalicianEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecn	oloxías da Información	Computación	1	
Coordinador	Bernardo Roca, Guillermo de		E-mail	guillermo.deber	rnardo@udc.es
Lecturers	Bernardo Roca, Guillermo de		E-mail	guillermo.deber	rnardo@udc.es
	Santos Reyes, Jose			jose.santos@u	dc.es
Web	moodle.udc.es	'		'	
General description	The course introduces advanced	data structures, algorith	ms and tools	s for the manageme	ent of biological sequences.
	Particularly, it sintroduces compre	ession techniques for bi	ological sequ	iences, graphs and	networks, and techniques for
	protein structure prediction.				

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Ability to know the scope of Bioinformatics and its most important aspects
A2	CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
А3	CE3 ? To analyze, design, develop, implement, verify and document efficient software solutions based on an adequate knowledge of the
	theories, models and techniques in the field of Bioinformatics
A6	CE6 - Ability to identify software tools and most relevant bioinformatics data sources, and acquire skill in their use
A8	CE8 - Understanding the basis of the information of the hereditary material, its transmission, analysis and evolution
A9	CE9 ? To understand the benefits and the problems associated with the sequencing and the use of biological sequences, as well as
	knowing the structures and techniques for their processing
B1	CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas,
	often in a context of research
B2	CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
	broad (or multidisciplinary) contexts related to their field of study
В8	CG3 - Be able to work in a team, especially of interdisciplinary nature
C6	CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to.
C7	CT7 ? To maintain and establish strategies for scientific updating as a criterion for professional improvement.

Learning outcomes			
Learning outcomes	Study	y progra	amme
	con	npetenc	es/
		results	
To know the main state-of-the-art data structures for the compact and self-indexed representation of sequences, and	AJ1		
algorithms to manage them.	AJ2		
	AJ9		
To create compressed data structures to develop analysis and alignment tasks on sequences efficiently in time and space.	AJ2	BJ1	CJ6
	AJ3	BJ2	CJ7
	AJ6	BJ8	
	AJ8		

To know the main issues associated secondary and tertiary protein structure prediction and their importance, as well as the	AJ1	BJ1	CJ6]
main prediction techniques in the state of the art.	AJ2		CJ7	
	AJ3			
	AJ6			
	AJ9			

	Contents	
Topic Sub-topic		
Compresión de secuencias biolóxicas	Lempel-Ziv	
	Grammar-based compression	
Biological sequence indexing	Burrows-Wheeler Transform	
	FM-index	
	Search and assembly applications	
Succinct representation of graphs and biological networks	Data structures for compact graph representation	
	Representation of biological networks	
	Applications to biological sequences	
Protein structure prediction Basic concepts on proteins		
	Secondary structure prediction with machine learning techniques	
	Tertiary structure prediction	
	Protein folding models	

Plannin	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
A1 A2 A3 A6 A8 A9	11	11	22
A1 A2 A3 A6 A8 A9	4	0	4
B2			
A1 A2 B1 B2 B8 C6	10	38	48
C7			
	1	0	1
	Competencies / Results A1 A2 A3 A6 A8 A9 A1 A2 A3 A6 A8 A9 B2 A1 A2 B1 B2 B8 C6	Results (in-person & virtual) A1 A2 A3 A6 A8 A9 11 A1 A2 A3 A6 A8 A9 4 B2 A1 A2 B1 B2 B8 C6 10	Competencies / Results (in-person & virtual) Work hours A1 A2 A3 A6 A8 A9

	Methodologies
Methodologies	Description
Guest lecture /	Lectures where the course contents are exposed
keynote speech	
Mixed	Test to show that the student has acquired the knowledge and skills required during lectures and practice sessions
objective/subjective	
test	
ICT practicals	Students will complete, individually or in groups, different practical exercises to develop the concepts acquired in the lectures

	Personalized attention
Methodologies	Description
ICT practicals	There may be differences among students regarding the knowledge of algotrithms and tehcniques used in the course. Personalized attencion will be provided for all practical work deceloped by the students.

	Assessment			
Methodologies	Competencies /	Description	Qualification	
	Results			

Mixed	A1 A2 A3 A6 A8 A9	Constará dunha proba na que deben ser demostrados os coñecementos e	20
objective/subjective	B2	competencias adquiridos.	
test			
		Para aprobar a materia globalmente hai que obter unha NOTA MÍNIMA de 1 (sobre 2)	
		nesta proba. Non sendo así, a nota máxima global da materia non será en ningún	
		caso superior a 4,9 e a materia considerarase sustpensa.	
ICT practicals	A1 A2 B1 B2 B8 C6	Os estudantes deberán entregar boletíns cos resultados das prácticas realizadas ou	80
	C7	solución aos problemas propostos.	

Assessment comments

FIRST OPPORTUNITYSudents that do not take the test will obtain a grade of "Non presentado" (absent)

SECOND OPPORTUNITYOnly students that have not passed the course in the first opportunity can be evaluated in the second opportunity.

In the second opportunity, students that do not retake any part will obtain a grade of "Non presentado" (absent)

ADVANCED OPPORTUNITY:

The assessment for the advanced opportunity will consist of a written exam that will compute for the 100% of the grade, and will include the knowledge and skills acquired during lectures and practice sessions.ACADEMIC DISPENSATION:

Students enrolled part-time with official dispensation from attending classes must contact the teachers within the first two weeks of the course to establish the condition for submitting and defending the practical exercises.

PRIMEIRA OPORTUNIDADEOportunidade ganar

	Sources of information
Basic	- N. C. Jones, P. A. Pevzner (2004). An introduction to bioinformatics algorithms. MIT Press
	- A. Tramontano (2006). Protein structure prediction: Concepts and Applications. Wiley-VCH
	- V. Mäkinen, D. Belazzougui, F. Cunial, A.I.Tomescu (2015). Genome-scale algorithm design. Cambridge University
	Press
Complementary	- T.K. Attwood, D.J. Parry-Smith (2002). Introducción a la bioinformática. Pearson educacion

Recommendations
Subjects that it is recommended to have taken before
Data structures and algorithmics for biological sequences/614522013
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.