		Teaching Guide						
	Identifying D	ata			2023/24			
Subject (*)	Electronics Technology	Code	614G01005					
Study programme	Grao en Enxeñaría Informática							
		Descriptors						
Cycle	Period	Year		Туре	Credits			
Graduate	2nd four-month period	First		Basic training	6			
Language	SpanishGalicianEnglish	SpanishGalicianEnglish						
Teaching method	Face-to-face							
Prerequisites								
Department	Enxeñaría de Computadores							
Coordinador	Bregains Rodriguez, Julio Claudio		E-mail	julio.bregains@u	dc.es			
Lecturers	Blanco Novoa, Óscar		E-mail	o.blanco@udc.es				
	Bregains Rodriguez, Julio Claudio			julio.bregains@udc.es				
	Castro Castro, Paula Maria			paula.castro@ud	lc.es			
	Fraga Lamas, Paula			paula.fraga@udc.es				
	García Naya, José Antonio	jose.garcia.naya@udc.es						
	Gonzalez Lopez, Miguel	miguel.gonzalez.lopez@udc.es						
	Iglesia Iglesias, Daniel Ismael	daniel.iglesia@u	daniel.iglesia@udc.es					
	Lamas Seco, Jose Juan		jose.juan.lamas.seco@udc.es					
	Rodas González, Javier			javier.rodas@udc.es				
	Vazquez Araujo, Francisco Javier			francisco.vazquez@udc.es				
Web	campusvirtual.udc.es							
General description	Physical principles of semiconductors	and logic families.	Electronic a	and photonic devices.	Electronic circuits.			

	Study programme competences / results
Code	Study programme competences / results
A2	Comprensión e dominio dos conceptos básicos de campos e ondas, e electromagnetismo, teoría de circuítos eléctricos, circuítos
	electrónicos, principio físico dos semicondutores e familias lóxicas, dispositivos electrónicos e fotónicos e a súa aplicación para a
	resolución de problemas propios da enxeñaría.
B1	Capacidade de resolución de problemas
В3	Capacidade de análise e síntese
C2	Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning outcomes				
Learning outcomes		Study programme competences / results		
To learn fundamental physical concepts governing computer functioning: electrical and electronic circuits.	A2	B1 B3	C2 C6	
Practical applications of the solid-state devices and analog and digital integrated circuits.	A2	B1	C2	
		В3	C6	

Contents						
Topic	Sub-topic					
Chapter 1. Electric circuits	1.1 Basic concepts of electricity. Ohm's law.					
	1.2 Voltage and current sources. Power.					
	1.3 Electrical circuits. Kirchhoff's laws.					
	1.4 Circuits theorems.					

Objection 0. Objection and disable and a second disable and	O.A.W
Chapter 2. Charging and discharging capacitors. Amplifiers	2.1 Waveforms. Fundamental parameters.
	2.2 Behavior of the capacitor parameters with respect to time.
	2.3 R-C circuits in the time domain.
	2.4 R-C Integrator and differentiator circuits.
	2.5 Foundations of amplifiers
Chapter 3. Semiconductor diodes	3.1 Physical principles of semiconductor devices.
	3.2 p-n junction.
	3.3 Diode V-I characteristic. Linear models.
	3.4 Avalanche diodes. LED. Photodiodes.
Chapter 4. Transistors	4.1 MOSFET unipolar transistors.
	4.2 V-I characteristic in common-source mode.
	4.3 Operational regions and linear equivalent models.
	4.4 MOSFET transistors in amplifying and switching modes.
Chapter 5. Logic circuits	5.1 Introduction. General properties of digital circuits.
	5.2 The CMOS inverter.
	5.3 CMOS gates.
	5.4 CMOS families.

	Plannir	ıg		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A2 B1 B3 C2 C6	30	42	72
Laboratory practice	A2 B1 B3 C2 C6	20	30	50
Problem solving	A2 B1 B3 C2 C6	10	14	24
Mixed objective/subjective test	A2 B1 B3 C2 C6	3	0	3
Personalized attention		1	0	1

	Methodologies						
Methodologies	Description						
Guest lecture /	Educational exposition, using both slides and blackboard, of the theoretical contents of the subject. Examples.						
keynote speech							
Laboratory practice	Students will perform laboratory practices for circuit analysis.						
	The students registered part-time and with academic dispensation of exemption attendance will develop the practices not						
	necesarily on-site, and the submission and defense dates will be adjustable.						
Problem solving	Students learn how to formulate and solve representative exercises. They also gather together in small groups in order to						
	share their knowledge and discuss some results.						
Mixed	Exam about the contents of the subject combining theoretical questions with practical exercises.						
objective/subjective							
test							

Personalized attention			
Methodologies	Description		

Guest lecture /	Guest lecture/keynote speech: To solve questions from the students related to the theoretical concepts introduced during the
keynote speech	lectures.
Laboratory practice	
Problem solving	Laboratory practice; To solve questions from the students related to the proposed exercises to be solved in the electronics
	laboratory with the help of the basic instrumentation equipment.
	Problem solving; To solve questions from the students related to the proposed exemplary exercises.
	In all cases, communication with the students will take place using the individual tutoring hours, through email, Teams, or by making use of the corresponding Moodle tools. These two last cases will be particularly adequate for those students with with academic dispensation of exemption attendance.
	For those students registered part-time the timetable the tutoring hours could be adapted according to needs.

Assessment						
Methodologies	Competencies /	Competencies / Description				
	Results					
Laboratory practice	A2 B1 B3 C2 C6	Evaluation of the exercises solved by the student in the electronics laboratory.	20			
Problem solving	A2 B1 B3 C2 C6	Evaluation, by means of mixed tests, of the exemplary exercises solved by the	40			
		student.				
Mixed	A2 B1 B3 C2 C6	Final evaluation of the theoretical concepts and problem solving skills.	40			
objective/subjective						
test						

Assessment comments

The evaluation of this subject consists of:

- final exam including theoretical questions and practical exercises,
- practices exam, and.
- problem-solving tests during the lecture period.

The final mark is obtained as follows: Final mark = A + B + C, where:

A = mark corresponding to the final exam (0 to 4),

B = mark corresponding to the laboratory exercises (0 to 2), and

C = mark corresponding to the problem-solving tests (0 to 4).

To pass the course, the following must be fulfilled: final grade higher than or equal to 5, having obtained at least 1 point in the final exam. If such a minimum of 1 point is not obtained, the final grade will be equal to (B+C)/2.

Academic fraud in the performance of tests or evaluation activities: The fraudulent performance of the evaluation tests or activities, once verified, will directly imply the qualification of failure in the call in which it is committed: the student will be qualified with "suspenso" (numerical grade 0) in the corresponding call of the academic year, whether the commission of the fault occurs in the first opportunity or in the second. For this, the student's grade will be modified in the first opportunity report, if necessary.

In the second opportunity (July) only the final exam can be repeated (A). Marks corresponding to the laboratory exercises (B) and SGT problem-solving tests (C) correspond to those obtained during the lecture period. In this opportunity the student will have at his/her disposal an SGT exam, in addition to the corresponding final exam. In case of taking the additional SGT exam, the grade obtained in the exam will cancel the SGT grade obtained in the first opportunity.

For the Early Assessment Opportunity the same criteria as for the second opportunity will apply.

The evaluation criteria, scoring (see paragraph above), and activities for the students registered part time and with academic dispensation of exemption attendance will be the same as those required for the rest of the students. In this case, the complexity and contents of the evaluations will also be similar to those specified for the rest of the students.

Sources of information

Basic	- ()
	Material of the subject (slides, lecture notes, proposed and solved exercises, etc.). Schaum's Outline of Electric
	Circuits, Sixth Edition, 2014 McGraw-Hill Education, ISBN: 9780071830454Electronics. Allan R. Hambley. Ed.
	Prentice HallMaterial of the subject (slides, lecture notes, proposed and solved exercises, etc.). Schaum's Outline of
	Electric Circuits, Sixth Edition, 2014 McGraw-Hill Education, ISBN: 9780071830454Electronics. Allan R. Hambley. Ed.
	Prentice Hall
Complementary	References in English:Robert L. Boylestad, "Introductory Circuit Analysis", Prentice Hall.Robert L. Boylestad,
	"Electronic Devices and Circuit Theory", Pearson.Donald E. Scott, "Introduction to Circuit Analysis: A Systems
	Approach", McGraw-Hill Series in Electrical Engineering. Jacob Millman, "Microelectronics: Digital and Analog Circuits
	and Systems", McGraw-Hill.Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits: International Edition",
	Oxford.Albert PAul Malvino, "Electronic Principles", McGraw-Hill.Robert L. Boylestad and Louis Nashelsky, "Electronic
	Devices and Circuit Theory", Prentice Hall.Norbert R. Malik and Norb Malik, "Electronic Circuits: Analysis, Simulation,
	and Design (And Clinical Aspects)", Prentice Hall.Muhammad H. Rashid, "Microelectronic Circuits: Analysis and
	Design", Cengage Learning.References in Spanish:Electricidad Básica. Problemas Resueltos. Julio C. Brégains y
	Paula M. Castro. Ed. Starbook, ISBN 978-84-15457-25-1, 2012. Electrónica Básica. Problemas Resueltos. Julio C.
	Brégains y Paula M. Castro. Ed. Starbook, 2012.

K	е	CO	m	m	en	da	itic	ns	

Subjects that it is recommended to have taken before

Computer Science Preliminaries/614G01002

Calculus/614G01003

Subjects that are recommended to be taken simultaneously

Fundamentals of Computers/614G01007

Subjects that continue the syllabus

Fundamentals of Computers/614G01007

Computer Structure/614G01012

Networks/614G01017

Concurrency and Parallelism/614G01018

Infrastructure Management/614G01025

Hardware Devices and Interfaces/614G01032

Other comments

Students in this subject should have a basic knowledge about differential and integral calculus as well as electromagnetism. A sustainable use of the resources and the prevention of negative impacts on the natural environment must be made. It must be taken into account the importance of ethical principles related to the awareness of sustainability values in personal and professional behaviors.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.