		Teaching Gui	uc		
Identifying Data					2017/18
Subject (*)	Statistics Code			614G01008	
Study programme	Grao en Enxeñaría Informática				
		Descriptors			
Cycle	Period	Year		Туре	Credits
Graduate	2nd four-month period	First		FB	6
Language	SpanishEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Matemáticas				
Coordinador	Lorenzo Freire, Silvia E-mail silvia.ld		silvia.lorenzo@u	udc.es	
Lecturers	Aneiros Perez, German	E-mail		german.aneiros@udc.es	
	Cao Abad, Ricardo			ricardo.cao@ud	c.es
	Carpente Rodriguez, Maria Luisa		luisa.carpente@	udc.es	
	Costa Bouzas, Julian		julian.costa@ud	lc.es	
	Fernández Casal, Rubén			ruben.fcasal@udc.es	
	Francisco Fernandez, Mario			udc.es	
	Lombardía Cortiña, María José			maria.jose.lomb	ardia@udc.es
	Lorenzo Freire, Silvia			silvia.lorenzo@u	udc.es
	Montero Manso, Pablo			p.montero.manso@udc.es	
	Presedo Quindimil, Manuel Anton	io		manuel.antonio.	presedo.quindimil@udc.es
	Quintela Del Rio, Alejandro			alejandro.quinte	ela@udc.es
Web		,			
Seneral description	Descriptive statistics. Exploratory	data analysis. Proba	bility. Probabi	lity models. Statistica	l inference.

	Study programme competences
Code	Study programme competences
A1	Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.
В3	Capacidade de análise e síntese
C2	Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	CO	mpeten	ces
Knowing how to model in simple random contexts using probabilistic tools	A1	В3	C2
Knowing how to analyze data using descriptive techniques and how to perform inference of population features from partial			C2
information, collected by random sampling, using statistical techniques.			
Knowing how to use auxiliary computer tools for Statistics: statistical packages and programming languages with statistical			C2
orientation; and knowing how to critically interpret the results.			

Contents			
Topic Sub-topic			
Probability Definition of probability. Properties			
Conditional probability. Bayes? theorem			

Random variables	Discrete random variables
	Continuous random variables
	Central limit theorem
	Simulation
Descriptive statistics	Frequency distributions
	Graphical representations
	Location and dispersion measures
Statistical inference	Introduction
	Point estimation
	Confidence intervals
	Parametric hypothesis tests
	Nonparametric hypothesis tests
Simple regression	Simple linear regression
	Nonlinear regression

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 B3 C2	30	48	78
Laboratory practice	A1 B3 C2	20	16	36
Seminar	A1 B3 C2	10	10	20
Mixed objective/subjective test	A1 B3 C2	4	0	4
Personalized attention		12	0	12

	Methodologies
Methodologies	Description
Guest lecture /	Students will receive lectures where the professor, with the help of relevant audiovisual media, will present the theoretical and
keynote speech	practical contents of the subject. Participation and debate will be encouraged at all times.
Laboratory practice	Laboratory practices will be held in a computer lab. It will be learned how to use the free statistical software R, and its
	programming structures. Statistical studies using both real and simulated data will be performed.
Seminar	Seminars will reinforce both the applied nature of the subject and its interactivity. Students will be able to express their doubts
	and concerns regarding the subject, and they will have the opportunity to perform, with the professor supervision, similar
	questions to those proposed in the exams. Additionally, with a very individualized attention, they will be able to complete the
	lab practices.
Mixed	Students will have to show proficiency in the theoretical aspects of the subject and their ability to solve problems in the field of
objective/subjective	probability and statistics.
test	

	Personalized attention		
Methodologies	Description		
Guest lecture /	For problem solving, it will be important to personally help students with the questions that may arise. This attention will also		
keynote speech	serve, on the one hand, to the professor to detect potential problems in the methodology used to teach the subject and, on the		
Laboratory practice	e other hand, to the students to strengthen theoretical knowledge and to express their concerns about the subject.		
Seminar			

Assessment				
Methodologies	Competencies	Description	Qualification	

Laboratory practice	A1 B3 C2	Students will develop lab practice exercises specifically designed to assess their	20
		monitoring of the subject. The correct completion of these exercises will be supervised	
		by the professor in the classroom. To evaluate the degree of understanding and	
		learning of these practices, 2 or 3 assessment tests will be scheduled. They will be	
		performed during the laboratory classes having a 20% of the final grade.	
		For enrolled full-time students, the practice mark is not retrievable by performing	
		another test. Enrolled part-time students, who have not been evaluated of laboratory	
		practices, may perform a specific test to retrieve the 20% of the mark corresponding to	
		that part.	
Seminar	A1 B3 C2	During the course, students will prove their interest in the subject and his mastery of it	20
		by performing two written tests (controls), each with a maximum mark of 10%. These	
		two tests will correspond to Chapters 1 and 2 of the course.	
		Students who do not obtain the maximum of 20% of the mark corresponding to this	
		part will be able to retrieve the remaining part when taking the final exam of the	
		subject.	
Mixed	A1 B3 C2	The final exam, with a value between 60% and 80% (depending on Chapters 1 and 2	60
objective/subjective		written control grades), will consist of a theoretical and a practical written test.	
test			

Assessment comments

Students will finish the class period with a maximum of 40% of the grade, achieved with the two written tests (10% each) and the two or three tests evaluating the laboratory practices (20%).

On the date set by the Faculty in its annual program, students will perform, in writing, the final exam of the subject (60%), where they will have to answer theoretical questions, solve theoretical and practical issues, and calculate the solution of several problems. For this test, students will only bring the material expressly authorized (e.g. pen or calculator). The grade obtained in the final exam (60%) will be re-scaled so that students will have the opportunity to retrieve the 20% of the mark corresponding to the written controls (the 20% of the laboratory practice assessment mark cannot be retrieved). Thus, depending on the score obtained by the student in the two written controls, the highest score of the final exam will be between 6 and 8 points (out of 10).

Thus, denoting by P the laboratory practice grade (between 0 and 2 points), denoting by C the written controls (Chapters 1 and 2) final grade (between 0 and 2 points) and denoting by F the final exam grade (between 0 and 10 points), the course final grade will be P+C+0'1*(8-C)*F. The day of the final exam, part-time students, who have not been previously evaluated for the laboratory practice part, will be able to perform a specific test to retrieve the 20% of the mark corresponding to that part.

	Sources of information		
Basic	- Cao, R., Francisco, M., Naya, S., Presedo, M.A., Vázquez, M., Vilar, J.A. y Vilar, J.M. (2001). Introducción a la		
	Estadística y sus aplicaciones. Ediciones Pirámide		
	- Eguzkitza Arrizabalaga, J.M. (2014). Laboratorio de estadística y probabilidad con R. Gami Editorial		
Complementary	- Blasco Lorenzo, A. y Pérez Díaz, S. (2015). Modelos aleatorios en ingeniería. Paraninfo		
	- Devore, J.L. (2005). Probabilidad y Estadística para Ingeniería y Ciencias. Thomson		
	- Gonick, L. y Smith, W. (2001). Á estatística ¡en caricaturas!. SGAPEIO		
	- Hernández, V., Ramos, E. y Yáñez, I. (2007). Probabilidad y sus aplicaciones en Ingeniería Informática. Ediciones		
	Académicas		
	- Horgan, J.M. (2009). Probability with R. An Introduction with Computer Science Applications. Wiley		
	- Montgomery, D.C. y Runger, G.C. (2004). Probabilidad y Estadística aplicadas a la Ingeniería. McGraw-Hill		
	- Quintela del Río, A. (2013). El estadístico accidental. El autor		
	- R Development Core Team (2000). Introducción a R. http://www.r-project.org/		
	- Ugarte, M.D., Militino, A.F., Arnholt, A.T. (2008). Probability and Statistics with R. Chapman and Hall/CRC		

Recommendations
Subjects that it is recommended to have taken before
Calculus/614G01003
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Statistical Methods/614G01057
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.