
Teaching Guide

Identifying Data 2020/21

Subject (*) Algorithms Code 614G01011

Study programme Grao en Enxeñaría Informática

Descriptors

Cycle Period Year Type Credits

Graduate 1st four-month period Second Obligatory 6

Language SpanishEnglish

Teaching method Hybrid

Prerequisites

Department Ciencias da Computación e Tecnoloxías da InformaciónComputación

Coordinador Valderruten Vidal, Alberto E-mail alberto.valderruten@udc.es

Lecturers Casanova Crespo, Jose Maria

Fontenla Romero, Oscar

Gómez Rodríguez, Carlos

Hernandez Pereira, Elena Maria

Jorge Castro, Jose Santiago

Valderruten Vidal, Alberto

E-mail jose.casanova.crespo@udc.es

oscar.fontenla@udc.es

carlos.gomez@udc.es

elena.hernandez@udc.es

santiago.jorge@udc.es

alberto.valderruten@udc.es

Web moodle.udc.es/course/view.php?id=55374

General description This course on Algorithms allows the computer science engineering student to delve into algorithm design techniques,

taking into account qualitative and quantitative factors in their evaluation. On the one hand, it completes the training on the

writing of efficient and correctly structured programs. On the other hand, it approaches the most common problem-solving

techniques that an engineer can find.

It is worth noting that the conduction of experiments involving runtime measurements on different algorithms provides an

empirical approach that is usually highly regarded by the student, who can thus establish the concrete interpretation of the

complexities found. The difficulties that arise in some of the studied cases allow for a complementary reflection on aspects

like computing resource management, process execution details, architectures and operating systems used, etc.

The study and analysis of an important set of fundamental algorithms is also worth remarking, covering a large range of

algorithmic techniques and their applications. The possibility of using different techniques for the resolution of some

problems results naturally into thinking about the advantages and disadvantages of the different strategies, and the need to

know how to choose the best alternative for each particular scenario.

Lastly, it is important to develop the necessary rigor to develop solutions that not only adapt to a given specification, but

also do so in an efficient way from the viewpoint of the needed computational resources. This will be illustrated by means of

various practical cases where the existence of known efficient algorithms leads us to reject alternative designs, even when

they look very natural at a first glance.

1/8

Contingency plan 1. Modifications to the contents

No changes.

2. Methodologies

*Teaching methodologies that are maintained

Tutored works

*Teaching methodologies that are modified

Lecture: It will be done remotely, through Teams and/or recorded videos.

Short answer test: It will be done remotely, through Teams and Moodle.

Laboratory practicals: They will be carried out remotely, using Teams. A laptop configuration with linux, gcc and svn is

recommended.

Problem solving: It will be done remotely, using Teams and Moodle.

Objective test: It will be done remotely, using Teams and Moodle, in addition to the recommended configuration of the

laptop with linux, gcc and svn for the practical part.

3. Mechanisms for personalized attention to students

Email: daily, for inquiries.

Moodle: daily, to access class materials, check the calendar or use the forums.

Teams: during the theory, SGT or practical hours foreseen in the course schedule; group tutorials on the theory (2h per

week) and on the practicals (2h per week); regarding individual tutoring, it will be maintained during each teacher's office

hours upon request via email.

4. Modifications in the evaluation

All tests (continuous assessment and objective test) are made remotely.

*Evaluation observations:

The provisions of the teaching guide are maintained.

An alternative date will be offered to students who have logistical problems at the time of the tests.

5. Modifications to the bibliography or webgraphy

No changes.

Study programme competences / results

Code Study programme competences / results

A12 Coñecemento e aplicación dos procedementos algorítmicos básicos das tecnoloxías informáticas para deseñar solucións a problemas,

analizando a idoneidade e a complexidade dos algoritmos propostos.

A13 Coñecemento, deseño e utilización de forma eficiente dos tipos e estruturas de datos máis adecuados á resolución dun problema.

B3 Capacidade de análise e síntese

C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e

para a aprendizaxe ao longo da súa vida.

Learning outcomes

Learning outcomes Study programme

competences /

results

To know how to apply techniques for algorithmic complexity analysis. A12

A13

B3

2/8

To recognize the importance of studying algorithm complexity and to know how to perform empirical studies to determine that

complexity.

A12

A13

B3 C3

To know the most used techniques in algorithm design. A12 B3

To understand the elements of study about computational complexity. A12

A13

B3

To use different computational models and levels of abstraction needed for algorithm design. A12 B3

To identify data structures adapted to the studied algorithms to obtain more efficient and robust implementations. A13 B3 C3

Contents

Topic Sub-topic

Lesson 1. Analysis of Algorithms.

Code: T1.

Outline: This first lesson addresses the analysis of algorithm

complexity as one of the main goals of the course.

The idea is to add algorithmic efficiency to the toolbox of

already familiar criteria like program structure and

correctness.

Lesson topics:

1. Analysis of the efficiency of algorithms: asymptotic notations, computation model,

empirical verification of the analysis.

2. Calculation of runtimes: analysis of worst and average cases, calculation of O,

resolution of recurrence relations.

Lesson 2. Data Structures

Code: T2.

Outline: In this lesson, a revision of basic data structures is

proposed (stacks, lists, queues, trees, sets and graphs) to

study their usage concerns regarding spatial and temporal

complexities. Similarly, a deep study is done over interesting

structures regarding execution times: hash tables and heaps.

This last structure will be turned to when dealing with an

improvement over graph algorithms and in certain dynamic

programming cases. The complexity of the searching

operation can be used as a leitmotif in this lesson.

In the introduction of this lesson, it is important to insist on

structure criteria of any application designed, motivating the

use of abstract data structures and its implementation by

modules. The objective is to establish general outlines of what

is considered a programming discipline, which must be

required from the student in the practicals.

Lesson topics:

1. Stacks, queues and lists

2. Trees and heaps

3. Hashing

4. Disjoint sets

5. Graphs (representation)

Lesson 3. Algorithms on sequences and sets of data

Code: T3.

Outline: The problem of sorting a sequence of elements

becomes, in this part of the course, an ideal excuse both for

studying the complexity of various kinds of algorithms and to

present different algorithm design strategies that can be

extrapolated to solve other problems.

One of the algorithms that merit special attention is quicksort,

as it can be used to introduce the fundamental characteristic

of random algorithms, which can behave in different ways on

the same input. A direct consequence is that the concepts of

"best case" or "worst case" for an input

no longer makes sense, which is an important aspect to

discuss in class.

Lesson topics:

1. Search algorithms

2. Sorting algorithms: insertion, Shell, heapsort, mergesort, quicksort

3. Random algorithms

3/8

Lesson 4. Greedy algorithms

Code: T4.

Outline: In this lesson, greedy algorithms are studied. Once

the technique is explained using its general characteristics,

presented using an example, the most representative

algorithms of this category will be studied: graph algorithms, a

solution for the knapsack problem and a planning task

problem.

Lesson topics:

1. The knapsack problem

2. Graph algorithms: topological sorting, minimum spanning tree and shortest paths

3. Hashing

Lesson 5. Algorithm design by induction

Code: T5.

Outline: At this point, the student has already seen various

algorithms that follow a divide-and-conquer strategy:

mergesort and quicksort, binary search, maximum

subsequence sum... the work proposed in the first part of this

lesson consist in generalising the formulation of said strategy,

identifying its distinct features in each of the proposed

algorithms.

The second unit of this lesson concerns the use of a

bottom-up strategy to find a general solution from the

solutions to elementary subproblems. From an efficiency

viewpoint, the use of top-down techniques like "divide

and conquer" will be questioned in some situations. The

option of dynamic programming can yield a compromise

allowing, when possible, an optimization of the amount of

memory required by the algorithm.

Lesson topics:

1. Divide and conquer

2. Dynamic programming: optimality principle, knapsack problem

Lesson 6. Exploring graphs

Code: T6

Outline: The objective of this lesson is to give a broader

insight of graph applications to undertake problems of different

nature, and to take into account algorithmic techniques linked

to the development of relevant areas of computer science as

artificial intelligence. The graph algorithms studied in greedy

algorithms lesson (T4) agree on visiting all the graph nodes.

The improvement of the execution times of those algorithms

that avoid the exhaustive visit of the graph nodes will be

emphasized.

Lesson topics:

1.	Exploring graphs

2.	Strategy games

3.	Backtracking algorithms

Lesson 7. Computational complexity

Code: T7

Outline: In this last lesson, we introduce a reasoning about the

set of algorithms that can solve each kind of problem. We will

deal with the complexity of problems, lower bounds for

problem complexity and NP-completeness. In brief, we will

address the main techniques and concepts used in the study

of computational complexity.

Lesson topics:

1. NP-Completeness, NP-Complete problems

Planning

Methodologies / tests Competencies /

Results

Teaching hours

(in-person & virtual)

Student?s personal

work hours

Total hours

Guest lecture / keynote speech A12 A13 B3 28.75 28.75 57.5

Short answer questions A12 A13 B3 1.25 6.25 7.5

4/8

Laboratory practice A12 A13 B3 C3 19 19 38

Supervised projects A12 A13 B3 C3 4 2 6

Problem solving A12 A13 B3 5 10 15

Objective test A12 A13 B3 C3 4 20 24

Personalized attention 2 0 2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

Methodologies Description

Guest lecture /

keynote speech

Lectures where theoretical knowledge is taught using various resources: blackboard, slides, projections, demos and virtual

resources. They may include guest lectures by invited speakers.

Short answer

questions

Tests that consist in solving exercises involving the execution of cases using the algorithms studied in the course, or their

adaptation to other situations. These tests are assessed.

Laboratory practice Practicals designed by the professor, based in the knowledge acquired by the student in the keynote speeches, and which

therefore complement them.

The students will develop this work in groups of two throughout the course, and individually in a final practical that is included

in the objective test.

The practicals will consist in the implementation of programs that illustrate problems related with the course contents. A report

of results will be required for assessment. During the hours assigned to each practical, the reports of the previous practical will

be assessed.

Supervised projects Supervised projects proposed by the professor and developed by the students, either in groups or individually.

Problem solving Examples will be developed on the theoretical contents of each part of the course, and doubts will be solved. The resolution of

some of the problems will be assessed individually.

Objective test Knowledge of the theoretical and practical contents of the course will be assessed, as well as the final individual practical

assignment.

Personalized attention

Methodologies Description

Supervised projects

Laboratory practice

Problem solving

Problem-solving lessons in small groups: Examples about theoretical contents related to the lesson will be developed and

questions will be answered.

Individual or in groups tests for monitoring purposes about the lesson studied. The teacher controls them by SGTs and

assessment tests.

Computer laboratory practicals: Programs will be implemented to learn problems related to the lesson. A report with results will

be asked for assessment.

Regarding individual tutoring, it will be maintained during each teacher's office hours through the following channels:

- Email, for short answer questions.

- Teams: virtual meetings, preferably upon request via email.

Assessment

Methodologies Competencies /

Results

Description Qualification

5/8

Short answer

questions

A12 A13 B3 Two objective tests of monitoring assessment, where the theoretical contents skills of

the academic work will be evaluated.

They will be made during lectures and will be pre-announced in the initial planning

presented in the start of the course.

10

Objective test A12 A13 B3 C3 Theoretical and operative knowledge of the subject will be evaluated.

Individual theory exam (2h): 40%

Individual practice exam (2h): 20%

To take the first opportunity practice exam, it is mandatory to deliver the laboratory

practices in time.

60

Laboratory practice A12 A13 B3 C3 Four laboratory practicals made in pairs, where it will be assessed: program structure,

documentation quality, clarity, appropriateness, and result explanation.

To deliver the laboratory practicals in time and form is a necessary condition to take

the objective individual practical test for the first opportunity (January).

Assessment is done by monitoring practical work, during the laboratory practicals

sessions.

15

Problem solving A12 A13 B3 Evaluation of three exercises where, after solving doubts, examples about content

skills of the lesson will be developed.

These exercises will be carried out in Small Group Tutorial (SGT) hours scheduled

along the course. Sometimes, they may be finished in non-teaching hours.

15

Others

Assessment comments

6/8

In the 2nd opportunity, the student may attend again the theory and practice exams (parts planned in the objective test).The individual practical exam

(objective test) will take place the same day of the theory exam and different shifts may be established depending on the number of students enrolled;

it is mandatory for the student to have in its user account all the practical work done in the course.A student will have a status of ?Absent? if he does

not attend the theory and practical exams in the official evaluation period.Part-time enrollment studentsIn this subject, this fact involves that the final

grade will be the best one between the one obtained following this teaching guide criteria and the one obtained in the objective test with the following

division: 70% theory exam and 30\% practical exam.

In the advanced opportunity of December the total grade (100%) corresponds to a specific exam with theoretical and practical issues.

In the 2nd opportunity, the student may

attend again the theory and practice exams (parts planned in the objective

test).

The individual practice exam (objective

test) will take place the same day of the theory exam and different shifts may

be established depending on the number of students enrolled; it is mandatory

for the student to have in its user account all the practice work done in the

course.

A student will have a status of ?Absent?

if he does not attend the theory and practice exams in the official evaluation

period.

Part-time enrollment students

In this subject, this fact involves that

the final grade will be the best one between the one obtained following this

teaching guide criteria and the one obtained in the objective test with the

following division: 70% theory exam and 30% practice exam.

In the advanced opportunity of December

the total grade (100%) corresponds to a specific exam with theoretical and

practice issues.

						

Sources of information

Basic - M. A. Weiss (1995). Estructuras de Datos y Algoritmos. Addison Wesley

- U. Manber (1989). Introduction to Algorithms - A Creative Approach. Addison Wesley

- G. Brassard y P. Bratley (1997). Fundamentos de Algoritmia. Prentice Hall

Complementary - F. Aguado, F. Gago, M. Ladra, G. Pérez, C. Vidal y A. M. Vieites (2018). Problemas resueltos de Combinatoria.

Laboratorio con SageMath. Paraninfo

- B. W. Kernighan y D. M. Ritchie (1991). El lenguaje de programación C, 2ª edición. Prentice Hall

- T. H. Cormen, C. E. Leiserson y R. L. Rivest (1990). Introduction to Algorithms. MIT Press

- R. Peña Marí (2005). Diseño de Programas. Formalismo y Abstracción. Tercera edición.. Pearson Prentice Hall

- R. Sedgewick (1988). Algorithms. Addison Wesley

Recommendations

Subjects that it is recommended to have taken before

Discrete Mathematics/614G01004

Programming II/614G01006

Subjects that are recommended to be taken simultaneously

Programming Paradigms/614G01014

Subjects that continue the syllabus

Concurrency and Parallelism/614G01018

Intelligent Systems/614G01020

Other comments

7/8

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot

be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

8/8

