		Teaching	g Guide			
	Identifying	Data			2018/19	
Subject (*)	Concurrency and Parallelism Code			614G01018		
Study programme	Grao en Enxeñaría Informática					
	·	Descri	ptors			
Cycle	Period	Yea	ar	Туре	Credits	
Graduate	2nd four-month period	Seco	ond	Obligatory	6	
Language	SpanishGalicianEnglish					
Teaching method	Face-to-face					
Prerequisites						
Department	ComputaciónEnxeñaría de Computadores					
Coordinador	Paris Fernandez, Javier		E-mail	javier.paris@udc.es		
Lecturers	Barreira Rodriguez, Noelia		E-mail	noelia.barreira@u	noelia.barreira@udc.es	
	Darriba López, Diego			diego.darriba@u	dc.es	
	Fraguela Rodriguez, Basilio Bernai		basilio.fraguela@	udc.es		
	González Domínguez, Jorge			jorge.gonzalezd@udc.es		
	Paris Fernandez, Javier			javier.paris@udc	.es	
	Quintela Carreira, Juan Jose		juan.quintela.carr	reira@udc.es		
	Rey Expósito, Roberto			roberto.rey.exposito@udc.es		
	Sanchez Penas, Juan Jose			juan.jose.sanchez.penas@udc.es		
	Touriño Dominguez, Juan			juan.tourino@udo	c.es	
Web	moodle.udc.es					
Seneral description						

	Study programme competences
Code	Study programme competences
A12	Coñecemento e aplicación dos procedementos algorítmicos básicos das tecnoloxías informáticas para deseñar solucións a problemas,
	analizando a idoneidade e a complexidade dos algoritmos propostos.
A20	Coñecemento e aplicación dos principios fundamentais e técnicas básicas da programación paralela, concorrente, distribuída e de tempo
	real.
В3	Capacidade de análise e síntese
C4	Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a
	realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C8	Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da
	sociedade.

Learning outcomes			
Learning outcomes		, progra	
The student should know basic algorithms and how to apply them to solve problems, analyzing the adequacy and complexity	A12	В3	C4
of the proposed concurrent and parallel algorithms.			
The student should know how to apply the fundamentals of real time, parallel, concurrent and distributed programming.			C6
			C8

Contents		
Topic	Sub-topic	

T1. Concurrent programming fundamentals	1.1 Concepts		
	1.1.1 Hardware architectures		
	1.1.2 Operating Systems		
	1,1.3 Threads and Processes		
	1.2 Multiprocess programming (fork/join)		
	1.3 Multithread programming		
	1.4 Critical section		
	1.5 Mutual exclusion		
	1.6 Atomic instructions		
	1.7 Condition synchronization		
	1.8 Semaphores		
	1.8.1 Mutex		
	1.8.2 Semaphores		
	1.9 Deadlock. Prevention, avoidance, recovery		
	1.10 Starvation		
	1.11 Communication and synchronization		
	1.12 Scalability		
T2. Concurrent Algorithms	2.1 Producers/consumers.		
-	2.2 Readers/writers		
	2.3 Dining philosophers		
	2.4 Shared nothing		
T3. Parallel programming principles	3.1 Concepts		
	3.1.1 Levels of paralellism		
	3.1.2 Data dependencies		
	3.2 Message passing model		
	3.2.1 Basic concepts		
	3.2.2 Point to point communication		
	3.2.3 Collective operations		
	3.3 Analysis of parallel algorithms		
	3.3.1 Performance measure of parallel algorithms		
	3.4 Methodology for parallel programming		
	3.4.1 Task decomposition		
	3.4.2 Task assignment		
	3.4.3 Optimization techniques		
	3.5 Schemes for parallel algorithms		
	3.5.1 Single Process Multiple Data		
	3.5.2 Master/slave paradigm		
T4. Design of parallel algorithms and applications	4.1 Message passing libraries		
	4.2 Case of study		
	4.3 Performance evaluation		
	4.4 Inclusion of optimization techniques		

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A12 A20 C4 C6 C8	25	40	65
Mixed objective/subjective test	A12 A20 B3 C4 C6	3	0	3
Laboratory practice	A12 A20 B3 C8	16	24	40
Problem solving	B3 C6	10	20	30

2/4

Seminar	A12 A20 B3 C4 C6	5	6	11
	C8			
Personalized attention		1	0	1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Lecture with audiovisual reinforcement materials, and questions directed at the students to reinforce the transmission of
keynote speech	concepts and improve the learning process.
Mixed	Written exam with questions about the content of the lectures and the practical problems solved in the laboratory practice.
objective/subjective	
test	
_aboratory practice	Practical activities aimed at enhancing the comprehension of the material by the students, such as programming exercicies.
Problem solving	Solving of concrete problems that appeared during the laboratory practice, possibly exploring multiple solutions.
Seminar	Presentation in groups about specific topics for in depth analysis, encouraging discussion and participation by everyone in
	attendance.

	Personalized attention		
Methodologies	Description		
Laboratory practice	During the laboratoy practice, seminars and problem solving sessions students will be able to ask questions about the		
Seminar	contents. The teacher, after considering these questions, will reinforce specific topics, solve problems that involve the		
Problem solving	concepts that are unclear, or any other activity that may help to improve the understanding of the content.		

		Assessment	
Methodologies	Competencies	Description	Qualification
Laboratory practice	A12 A20 B3 C8	Practical exercises divided on two blocks: concurrency and parallelism. Each block is	30
		worth 50% of the laboratory practice grade. Exercises can be solved in groups of two,	
		but will be graded individually.	
		It is necessary to get at least 50% of the grade of each block of the laboratory practice	
		in order to pass the subject.	
		If the grade of either block is less than 50% the student will fail the subject in the June	
		evaluation. In this situation, and student who does the exam in June will get a FAIL	
		grade (SUSPENSO). A student who does not do the exam in June will get a DID NOT	
		REPORT (NO PRESENTADO).	
Mixed	A12 A20 B3 C4 C6	Exam on the contents explained during the lectures and practiced in the laboratory.	70
objective/subjective		There will be two parts: concurrency (topics T1 and T2) and parallelism (topics T3 and	
test		T4). Each part is worth 50% of the grade of the mixed test.	
		In order to pass the subject it is necessary to get at least 40% of the maximum grade.	

Assessment comments

The final grade will be the weighted addition of the mixed test and the laboratory practice grades. In order to pass it is necessary to get at least 50% of the maximum grade. If a grade of 50% or more is achieved but some of the necessary conditions for passing the mixed test and laboratory practice are not met the final grade will be FAIL (4.5).

For the July evaluation only the mixed test will be graded again (70% of the total grade). It is still necessary to get at least 40% of the maximum grade in this exam.

The grade obtained during the term in the laboratory practice (30% of the final grade) will be used for both the June and July evaluations. The evaluation of the laboratory practice must be done in the group assigned to each student.

No special consideration will be given to students with part time enrollment.

	Sources of information
Basic	- Doug Lea (2000). Concurrent programming in Java design, principles and patterns . Reading, Massachusetts:
	Addison Wesley
	- Joe Armstrong (2007). Programming Erlang: Software for a Concurrent World. United States: Pragmatic
	Programmers
	- Francisco Almeida [et al.] (2008). Introducción a la Programación Paralela. Madrid: Paraninfo Cengage Learning
	- Peter S. Pacheco (1997). Parallel Programming with MPI. San Francisco, California : Morgan Kauffman
Complementary	- Wilkinson, B. y Allen, M (1999). Parallel Programming. Techniques and Applications Using Networked Workstations
	and Parallel Computers Upper Saddle River, New Jersey : Prentice Hall,

	Recommendations
	Subjects that it is recommended to have taken before
rogramming II/614G01006	
lgorithms/614G01011	
omputer Structure/614G01012	
rogramming Paradigms/614G01014	
oftware Design/614G01015	
	Subjects that are recommended to be taken simultaneously
perating Systems/614G01016	
etworks/614G01017	
oftware Process/614G01019	
	Subjects that continue the syllabus
ternet and Distributed Systems/6140	G01023
	Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.