Teaching Guide					
Identifying Data					2020/21
Subject (*)	Water treatment and energy eff			Code	632844206
Study programme	Mestrado Universitario en Enxeñaría da Auga (plan 2012)				
Descriptors					
Cycle	Period	Year		Type	Credits
Official Master's Degree	1st four-month period	First		Optional	6
Language	English				
Teaching method	Face-to-face				
Prerequisites					
Department	BioloxíaEnxeñaría CivilEnxeñaría Naval e Industrial				
Coordinador	Servia García, María José		E-mail	maria.servia@udc.es	
Lecturers	Martínez Díaz, Margarita Servia García, María José Vázquez González, Ana María		E-mail	margarita.martinez@udc.es maria.servia@udc.es ana.maria.vazquez@udc.es	
Web	caminos.udc.es/hosting/masteragua/				
General description	Wastewater treatment has become a fundamental tool in water management. Indeed, the ultimate aim of the Water Framework Directive (2000/60/EC) is to achieve the elimination of hazardous substances and contribute to achieving concentrations near background values for naturally occurring substances in both freshwater and marine ecosystems. The main purpose of this subject is to help students identify and evaluate risk factors and processes involved in water pollution and water treatment.				
Contingency plan	1. Modifications to the contents - No changes will be made 2. Methodologies *Teaching methodologies that - Lectures (taken into account -Workshops (taken into accoun *Teaching methodologies that - Laboratory practices (the tea 3. Mechanisms for personalize -EMAIL: Doubts and questions -TEAMS: Students will receive MOODLE: This platform will be Advances of students will be m 4. Modifications in the evaluation *Evaluation observations:- Gra exercises, as planned for face- 5. Modifications to the bibliograp - No changes will be made	e onlin studen ts will attentio de sup weekly dapted ng. aphy	atform Te olved on rough the to studen sis, and q e new co	doing exer basis. s platform a preparing s and doub s and will be	th the students) nce a week or by appointment. orts or doing exercises. solved by appointment. on students? reports and

Study programme competences	
Code	Study programme competences
A19	Knowledge of advanced water treatment with different conclusions: depuration, re-use, purification, elimination of nutrients and regeneration treatments
A23	Fundamental knowledge of energy consumption and its environmental implications inside a development sustainable

UNIVERSIDADE DA CORUÑA

A25	Knowledge and understanding of water in different situations: the working of ecosystems, environmental factors with the purpose of to make an inventory of medium, applying the methodology to value the impact and its use in studies and evaluations of the environmental impact.				
B1	To resolve problems effectively				
B2	To apply critical thinking, logic and creativity				
B3	To work individually with initiative				
B4	To communicate effectively in work surroundings				
B5	Continuous recycling of knowledge in a general perspective in a global situation of water engineering				
B6	Understanding of the need to analyse history to understand the present				
B7	Facility to integrate in multidiscipline teams				
B8	Capacity to organize and plan				
B9	Capacity for analysis, synthesis and structure of information and ideas				
C1	To understand the importance of the enterprising culture and to know the means at the reach of the enterprising people				
C2	To value knowledge critically, technology and available information to resolve problems that they will face				
C3	To assume as a professional and citizen the importance of learning throughout life				
C4	To value the importance of the investigation, innovation and technology development in the social ?economic advance and cultural in society				
C5	To posses and understand knowledge that gives a base or oportunity to be original in the development and for applications of ideas, often in the context of investigation				
C6	The students must be able to apply the acquired knowledge and their capacity to resolve problems in new surrandings or not well known within wider contexts (or multidiscipline) related with the study area				
C7	The students must be able to integrate knowledge and to affront the complexity to formulate judgements from information that, been incomplete or limited, include reflexions about social responsabilities and ethics related to the application of the knowledge and judments				
C8	The students must be able to comunicate their conclusions, knowledge and the last reasons that support them, to spezialated publics and not spezialated in a clear and unambiguous way.				
C9	The student must possess the learning ability with permits them to continues to study in a manner wich will be in a great measure self directed and individual				
Learning outcomes					
Learning outcomes			Study programme competences		
The learn	g outcomes address water treatment and how	uences the normal functioning of freshwater ecosystems.	AC19 AC23 AC25	$\begin{aligned} & \mathrm{BC} 1 \\ & \mathrm{BC} 2 \\ & \mathrm{BC} 3 \\ & \mathrm{BC} \end{aligned}$	$\begin{aligned} & \mathrm{CC} 1 \\ & \mathrm{CC} 2 \\ & \mathrm{CC} 3 \\ & \mathrm{CC} 4 \\ & \mathrm{CC} 5 \\ & \mathrm{CC} 6 \\ & \mathrm{CC} 7 \\ & \mathrm{CC8} \\ & \mathrm{CC} \end{aligned}$
Contents					
	Topic	Sub-topic			
Water, e analysis	rgy and sustainable development. Life cycle	Water demand Water footprint and carbon footprint Greenhouse gases emission			
Water re	as an example of sustainable initiative	Water reuse options Treatment options and their energy requirements Life cycle analysis of water reuse			

UNIVERSIDADE DA CORUÑA

Renewable energies to face water scarcity	The problem of the water and the energy Technologies based on renewable energies for freshwater production
Water and energy: two closely-related concepts	Introduction The use of energy to obtain the required water Energy obtained from water The use of water to obtain energy
The functioning of freshwater ecosystems	Lentic systems Lotic systems
Freshwater biodiversity. Types of aquatic organisms	Microbes and plants Animals
Effects of pollutants on aquatic ecosystems	Suborganismal effects Supraorganismal effects
The use of bioindicators to assess freshwater quality	Bioindicators recommended by the Water Framework Directive
Chemical contaminants of water	Types Standards Problems Health Effects and Impact on the environment
Chemical treatments	Coagulation-precipitation Oxidation reduction Ion exchange Disinfection High-service pumping Water plant residuals managment
Types of water contamination	Domestic wastewater Livestock Wastewater Industrial wastewater Municipal waste water Agricultural pollution Water from urban runoff
Analytical methods for the determination of physicochemical parameters	Analytical methods

Methodologies / tests	Competencies	Ordinary class hours	Student?s personal work hours	Total hours
Guest lecture / keynote speech	A19 A23 A25 B5 B6 B7 B9 C2 C3	25	25	

${ }^{*}$ *)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
Methodologies	Description
Guest lecture / keynote speech	Regular lectures where the main theoretical contents of the subject are regarded

UNIVERSIDADE DA CORUÑA

Laboratory practice	The laboratory practice will be done mainly in the chemistry laboratory. Practices will illustrate chemical concepts and the students wil learn important laboratory techniques
Workshop	During the workshop discussions will be organised and the students will be asked toproduce assays or reports in different formats

Methodologies	Personalized attention
Laboratory practice Workshop	Personalized attention to be provided mainly for laboratory practices and workshops

Assessment			
Methodologies	Competencies	Description	Qualification
Laboratory practice	$\begin{gathered} \text { A19 A25 B1 B2 B3 B4 } \\ \text { B7 B8 B9 C2 C3 C4 } \\ \text { C5 C6 C9 } \end{gathered}$	Assesment will be based mostly on claass assignments. Attendance to laboratory classes and technical visits will be taken into account for the final mark	40
Workshop	$\begin{gathered} \text { A19 A23 B2 B4 B5 B6 } \\ \text { B7 B8 B9 C1 C2 C3 } \\ \text { C4 C5 C6 C7 C8 } \end{gathered}$	Attendance to preparatory seminars and the work developed in the workshops will be considered for the final mark	20
Guest lecture / keynote speech	A19 A23 A25 B5 B6 B7 B9 C2 C3	The knowledge of the concepts developed at the magistral lectures will be assesed and considered for the final mark. Assessment methodologies might include oral presentations, written exams, analysis of scientific papers, etc.	40

Assessment comments

Sources of information	
Basic	- U.S. Environmental Protection Agency (2006). Wastewater Management Fact Sheet - Energy conservation. U.S. Environmental Protection Agency, Office of Water (http://www.epa.gov/own/mtb/energycon_fasht_fi - Karassik, I.; Messina, J.; Cooper, P.; Head, C. (2008). Pump handbook. New York: McGraw-Hill (4th ed.) - Malcolm Pirnie (2006). Municipal wastewater treatment plant energy evaluation summary report. Albany, New York: New York State Energy Research and Development Authority - Water Environment Federation; American Society of Civil Engineers (2009). Design of Municipal Wastewater Treatment Plants, 5th ed.; Manual of practice No.8; ASCE Manuals and Reports on Engineering Practice No.76. Alexandria, Virginia: Water Environment Federation - US Environmental Protection Agency (2009). Energy Star for Wastewater Plants and Drinking Water Systems . http://www.energystar.gov/index.cfm?c=water.wastewater_drinking_water - Dodds, W. \& Whiles, M. (2010). Freshwater Ecology. Academic Press
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

UNIVERSIDADE DA CORUÑA

$\left(^{*}\right)$ The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

